quai đê lấn biển là gì
Dự án xây dựng tuyến đê biển Bình Minh 4 ( huyện Kim Sơn) do Sở NN&PTNT tỉnh Ninh Bình làm chủ đầu tư. Đây là dự án trọng điểm của tỉnh Ninh Bình, quai đê lấn thêm hàng trăm ha đất về phía biển, mở rộng vùng bãi nuôi trồng thủy sản, bảo vệ khu vực đê Bình Minh 3 (đã xây dựng trước đó).
Do chiến tranh, các quá trình quai đê lấn biển, làm đầm nuôi tôm. B. Do chiến tranh, làm đầm nuôi tôm. C. Do chiến tranh. Đọc thầm bài "Trồng rừng ngập mặn" SGK Tiếng việt 5, tập 1 trang 128 và khoanh tròn vào ý đúng : Em hiểu thế nào là rừng ngập mặn? A.
Những người quai đê lấn biển ở Tiên Lãng. Sau những lần gặp bão bị mất trắng đồng tôm cá, nhiều hộ nuôi trồng thủy sản ở huyện Tiên Lãng (Hải Phòng) phải ăn chuối xanh để sống qua ngày. Có phụ nữ bị chồng dọa bỏ vì suốt ngày quấn lấy đầm tôm. > Nhiều chủ đầm ở Tiên Lãng từng bị cưỡng chế / Người dân Tiên Lãng: 'Lòng tin của chúng tôi đã hồi sinh'.
Do ở phía bắc và phía nam của quận là hai cửa sông Lạch Tray và Văn Úc thuộc hệ thống sông Thái Bình đổ ra biển đem theo nhiều phù sa, cộng thêm việc quai đê lấn biển ở Đảo Hòn Dấu để xây dựng khu Resort cao cấp, nên nước biển ở khu vực này (nhất là khu II) đục nhưng vẫn có sức thu hút du khách.
Một trong những vấn đề cần quan tâm là việc quai đê lấn biển, đào đắp ao đầm nuôi thả thủy sản sẽ làm cho nước biển không ra vào được, thủy triều không lưu thông được: sú, vẹt, sậy…bị chết, ảnh hưởng đến hệ sinh thái trong vùng.
materi tik kelas 3 sd semester 1. Ngày đăng 25/11/2016, 1332 Nghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai lấn biển Tiên LãngNghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai lấn biển Tiên LãngNghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai lấn biển Tiên LãngNghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai lấn biển Tiên LãngNghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai lấn biển Tiên Lãng TRƯỜNG ĐẠI HỌC HÀNG HẢI VIỆT NAM KHOA CÔNG TRÌNH THUYẾT MINH ĐỀ TÀI NCKH CẤP TRƯỜNG ĐỀ TÀI NGHIÊN CỨU KHOA HỌC NGHIÊN CỨU MỘT SỐ HÌNH THỨC ĐÊ QUAI LẤN BIỂN, ỨNG DỤNG CHO ĐÊ QUAI TIÊN LÃNG Chủ nhiệm đề tài NGƯT NGUYỄN VĂN NGỌC Hải Phòng, tháng 4/2016 Mục lục Mục lục Mục lục i Danh sách bảng biểu ii Danh sách hình ảnh iii Danh sách thuật ngữ, chữ viết tắt iv Mở đầu 1 Tính cấp thiết đề tài Tổng quan tình hình nghiên cứu thuộc lĩnh vực đề tài Mục đích đề tài Đối tượng phạm vi nghiên cứu Phương pháp nghiên cứu Ý nghĩa khoa học thực tiễn Chương Kết cấu đê truyền thống Việt Nam Kết cấu đê khu kinh tế Nam Đình Vũ Nhận xét phương án kết cấu sử dụng 11 Chương 13 Tính toán đê mái nghiêng 13 Tính toán đê thẳng đứng 35 Đề xuất giải pháp kết cấu 43 Chương 45 Giới thiệu dự án [2] 45 Các số liệu phục vụ cho tính toán [2] 45 Một số phương án đề xuất hội thảo 50 Tính toán thử nghiệm chia kích thước khối bố trí khối 54 Khái toán kinh phí xây dựng 56 Kết luận kiến nghị 56 Tài liệu tham khảo 60 i Danh sách bảng biểu Danh sách bảng biểu Bảng Các tác động sóng vào mái nghiêng 13 Bảng Hệ số Kv 17 Bảng Giá trị Prel kpa 17 Bảng Hệ số ξ Kanarski 19 Bảng Các hệ số k1; k2 k 22 Bảng Hệ số kv .22 Bảng Hệ số kp .22 Bảng Hệ số k .23 Bảng Hệ số n .25 Bảng Hệ số kfr công thức 26 Bảng Hệ số kfr công thức 26 Bảng Hệ số kd công thức 27 Bảng Hệ số krr cho công thức 27 Bảng Hệ số k cho công thức .28 Bảng Giá trị S công thức Vander - Meer’s 29 Bảng Chỉ tiêu lý lớp đất 49 ii Danh sách hình ảnh Danh sách hình ảnh Hình Mặt cắt ngang điển hình mặt kết cấu đê biển Hải Hậu Hình Giải pháp kết cấu đê đất .3 Hình Mặt cắt ngang đê đất, thi công thân đê túi cát vải địa kỹ thuật Hình Kết cấu bảo vệ đê đất đá lát khan .4 Hình Cấu kiện Basalton Hình Cấu kiện Hydro-blocks Hình Cấu kiện TSC .6 Hình Cấu kiện Âm dương .6 Hình Chân đê kiểu kiểu chìm Hình Chân đê kiểu mũi cắm sâu Hình Chân đê kiểu cọc chân đê ống buy .8 Hình Giải pháp kết cấu đê đá đổ Hình Kết cấu đê đá đổ có sử dụng kết cấu bảo vệ mặt đê Hình Giải pháp kết cấu đê tường cọc Hình Kết cấu đê mái nghiêng 10 Hình Kết cấu đê kết hợp 10 Hình Kết cấu đê hỗn hợp cải biển 11 Hình Kết cấu đê tường cọc có hàng cọc xiên trước 11 Hình Các yếu tố ảnh hưởng đem lại lựa chọn giải pháp kết cấu hợp lý 12 Hình Sự thay đổi mặt sóng leo lên mái đê 13 Hình Quỹ đạo parabol hạt nước rơi xuống mái đê .15 Hình Biểu đồ áp lực sóng lên mái nghiêng 17 Hình Biểu đồ áp lực sóng đẩy 18 Hình Đồ thị xác định kl hai công thức .23 Hình Đồ thị xác định kl hai công thức .24 Hình Biểu đồ phân bố tốc độ dội sóng vào mái đê 24 Hình Các khía cạnh trượt, ổn định đê mái nghiêng 31 Hình Sơ đồ tính trượt cung tròn công trình bảo vệ cảng mái nghiêng .32 Hình Sơ đồ xác định tâm trượt ban đầu 34 Hình Sơ đồ kiểm tra trượt phẳng công trình bảo vệ cảng mái nghiêng .34 Hình Các biểu đồ áp lực sóng lên tường chắn sóng thẳng đứng sóng rút 35 iii Danh sách hình ảnh Hình Tải trọng tác dụng lên công trình trọng lực tường đứng 36 Hình Biểu đồ ứng suất theo mặt phẳng tiếp xúc công trình lớp đệm đá 37 Hình Biểu đồ ứng suất theo mặt phẳng tiếp xúc tầng đệm đá đất 38 Hình Sơ đồ tính ổn định theo phương pháp mặt trượt cung tròn .40 Hình Sơ đồ phát triển biến dạng dẻo theo Jaropolski 41 Hình Sơ đồ chịu lực cọc bị mặt trượt cắt qua 43 Hình Sơ đồ tải trọng tác động lên công trình móng nông 43 Hình Sơ đồ tải trọng tác dụng lên công trình móng sâu 44 Hình Chịu lực kết cấu khối nông 44 Hình Mặt phương án tuyến phương án chọn 51 Hình Mặt cắt ngang đê đất 52 Hình Mặt cắt ngang đê đá đổ 52 Hình Mặt cắt ngang đê hệ thống ống BTCT .53 Hình Ứng dụng khối BTCT rỗng cho đê quai Tiên Lãng 53 Hình Sơ đồ kiểm tra ổn định trượt cung tròn .55 Hình Tính toán kiểm tra ổn định theo Geoslope 36 iii Danh sách thuật ngữ, chữ viết tắt Danh sách thuật ngữ, chữ viết tắt HĐĐ - hệ hải đồ BTCT - bê tông cốt thép BTCT ƯST - bê tông cốt thép ứng suất trước - chiều dài sóng - góc nghiêng kè MNTT - mực nước tính toán h - chiều cao sóng m - mái dốc ρ - tỷ trọng nước dung trọng nước g - gia tốc trọng trường - độ dốc sóng - góc hợp mái dốc đê mặt nước sóng leo nc - hệ số tổ hợp tải trọng; n - hệ số vượt tải; md - hệ số phụ điều kiện làm việc; kn - hệ số bảo đảm; m - hệ số diều kiện làm việc; c - cường độ áp lực chủ động; b - cường độ áp lực bị động; MNTK - mực nước thiết kế iv Mở đầu Mở đầu Tính cấp thiết đề tài Việt Nam có hệ thống sông ngòi dày đặc; tính sông có chiều dài 10km, có khoảng sông Mật độ sông ngòi trung bình 0,6 km/km2, vùng dày đặc đồng sông Hồng sông Cửu Long đạt km/km2 Dọc theo bờ biển dài có hàng trăm cửa sông mang theo hàng triệu m3 phù sa đổ biển, tạo nên bãi bồi rộng lớn lấn phía biển hàng chục mét năm, đặc biệt vùng sông Hồng sông Cửu Long Từ xa xưa cha ông ta biết đắp đê quai bãi bồi này, tạo thành diện tích lớn phục vụ cho canh tác nông nghiệp, nuôi trồng thủy sản Tuy nhiên việc đắp đê quai lấn biển trước thường thực diện tích bãi bồi cao, ổn định; kết cấu đê quai thường đê đất, thời gian thi công kéo dài nhiều năm Với công trình đê quai lấn biển Tiên Lãng nhằm phục vụ cho xây dựng sân bay quốc tế diện tích mặt khoảng tuyến đê quai dài 22km, qua khu vực sâu tới -1,5m hệ Hải đồ HHĐ, yêu cầu thi công ngắn, đặt yêu cầu phải nghiên cứu giải pháp kết cấu có khả thi công nhanh, đảm bảo yêu cầu kỹ thuật thi công, khai thác phải có giá thành rẻ, đòi hỏi đặt nghiên cứu đề tài Tổng quan tình hình nghiên cứu thuộc lĩnh vực đề tài Tại Việt Nam, đê quai lấn biển truyền thống chủ yếu đê đất, sau đê đá đổ Mới có số đề xuất kết cấu đê sử dụng ống Geotube [2], đê đá kết hợp với tường góc cọc [5] Qua tính toán cho thấy có loại đê kết hợp cho hiệu kinh tế, song tác giả muốn tìm kiếm giải pháp kết cấu nhằm đem lại hiệu kinh tếkỹ thuật cao Mục đích đề tài Mục đích đề tài tìm giải pháp kết cấu có chất lượng kinh tế kỹ thuật ứng dụng cho công tác đắp đê quai lấn biển nói chung Tiên Lãng nói riêng Đối tượng phạm vi nghiên cứu Đối tượng nghiên cứu đê quai để ổn định bãi bồi phục vụ cho công tác san lấp, xây dựng diện tích bãi bồi Phương pháp nghiên cứu Nghiên cứu lý thuyết kết hợp tính toán thử nghiệm để kiểm chứng kết cấu đề xuất Ý nghĩa khoa học thực tiễn Đắp đê quai lấn biển công việc phức tạp, kết cấu đê chịu tác động trực tiếp sóng, dòng chảy, nước dâng Các đê quai trước cha ông thực thi công thường vùng bãi bồi cao, lợi dụng thủy triều để thi công điều kiện không ngập nước Với đê Tiên Lãng có nhiều đoạn đê qua vùng thường xuyên ngập nước với độ sâu lớn, vùng thủy triều cao chịu tác động mạnh sóng dòng chảy, việc thi công khó khăn sử dụng dạng kết cấu đê đất trước đây; sử dụng đê đá đổ việc thi công thuận lợi hơn, tốn Rõ ràng sử dụng kết cấu đê truyền thống đê đất, đê đá dẫn đến khó khăn thi công, tốn Từ thực tế việc tìm giải pháp kết cấu việc làm khoa học nhằm giải yêu cầu thực tế đặt Chương 1 Tổng quan kết cấu đê quai lấn biển Chương Tổng quan kết cấu đê quai lấn biển Kết cấu đê truyền thống Việt Nam Việc đắp đê lấn biển thực sớm Việt Nam, song đặc biệt trọng phát triển mạnh vào thời kỳ quai đê lấn biển Nguyễn Công Trứ Cứ vài chục năm tuyến đê lại hình thành vùng bãi bồi cao, ổn định Các tuyến đê quai bồi đắp tôn tạo nhiều năm hình thành tuyến đê biển Kết cấu đê ban đầu đắp đất khai thác chỗ, trước thường lớp kết cấu bảo vệ mặt đê phía biển, thường bị hư hỏng tác động sóng triều cường, nước dâng bão Sau lớp mặt quan tâm bảo vệ dạng kết cấu khác nhau, sử dụng phổ biến kết cấu đá lát khan, đá hộc xây, khối bê tông tự chèn với nhiều hình thức đa dạng Trên hình thể kết cấu bảo vệ mặt đê biển Hải Hậu, Giao Thủy, tỉnh Nam Định; chọn hình thức lát mái dốc đê bê tông M300, liên kết với theo hình thức “âm - dương”, kết cấu bảo vệ mặt đê đánh giá thành công theo kết đánh giá tổng kết năm xây dựng, cải tạo, nâng cấp hệ thống đê biển từ Quảng Ninh đến Quảng Nam +5,50 +5,00 +3,50 MNTK +2,29 -0,50 Hình Mặt cắt ngang điển hình mặt kết cấu đê biển Hải Hậu Chương 1 Tổng quan kết cấu đê quai lấn biển Kết cấu đê khu kinh tế Nam Đình Vũ Điểm đặc biệt khu kinh tế hình thành lấn biển, diện tích lớn, tuyến đê qua vùng có độ sâu thường xuyên ngập nước, tác động mạnh môi trường Cụ thể khu kinh tế Nam Đình Vũ có diện tích chiều dài tuyến đê với cao độ địa hình 0,0 ÷ 1,8m HHĐ, chịu tác động sóng trường hợp triều cường, nước dâng bão, với chiều cao từ 2,5 ÷ 3,4m, đặt yêu cầu cần phải tìm kiếm giải pháp kết cấu để cho vừa đảm bảo kỹ thuật với chi phí đầu tư thấp nhất, có phương án đề xuất để xem xét lựa chọn Giải pháp kết cấu đê đất Hình kết cấu đê đất [7] đề xuất Nhằm thỏa mãn điều kiện ổn định giảm tác dụng sóng, mái dốc phía biển sử dụng độ dốc m = 4,0 m = 3,5; mái dốc có đê rộng 5m Mái dốc phía m = 2,5 Ngoài chân đê chặn ống Buy D150 đổ đá hộc, ống Geo-tube lõi cát R150 Mặt đê bảo vệ tác động sóng bê tông cốt thép BTCT kích thước 100x100x50cm lắp ghép khung BTCT 700 500 500 300 Hình Giải pháp kết cấu đê đất Khắc phục nhược điểm đê đất thi công việc đắp đất khó khăn điều kiện ngập nước, chịu tác động sóng, dòng chảy; nhà thiết kế đưa giải pháp khác nhau sử dụng túi cát vải địa kỹ thuật, dùng ống Geotube lõi cát để đắp thân đê hình +7,50 +6,50 +4,50 +5,00 0,00 -1,00 Hình Mặt cắt ngang đê đất, thi công thân đê túi cát vải địa kỹ thuật Chương 1 Tổng quan kết cấu đê quai lấn biển Kết cấu bảo vệ mái đê Vật liệu đất đắp khả chịu tác động sóng dòng chảy, mặt khác địa chất yếu đê bị lún nhiều lún thân đê lún Với đê bảo vệ khu kinh tế không cho phép thi công kéo dài, phải xử lý làm tăng kinh phí đầu tư Bảo vệ mái đê, có nhiều giải pháp kết cấu, tùy theo điều kiện thực tế để lựa chọn 1 Đá hộc đổ rối biện pháp thi công đơn giản, giới hóa cao tốn nhiều đá mỹ quan Giải pháp cho kết tốt khai thác đá bảo đảm kích thước trọng lượng Trọng lượng đá xác định từ điều kiện ổn định viên đá tác dụng sóng dòng chảy Kích thước viên đá chọn cần đảm bảo tỷ lệ kích thước lớn nhỏ không lớn 2 Đá hộc lát khan viên đá thi công sát đảm bảo khe hở không lớn 5cm Các khe hở chèn viên đá có kích thước bé Bề mặt đá lát khan tương đối phẳng, có mỹ quan Lát khan coi đạt yêu cầu kỹ thuật không nhấc viên đá riêng lẻ lên hay không dịch chuyển viên đá, phần lõm bề mặt chiều dài 2m không lớn 0,1d d đường kính danh nghĩa viên đá Để đề phòng phong hóa phá hoại lún người ta tiến hành lát đá sau độ lún công trình tắt Lát khan thực lớp hai lớp Nếu lát hai lớp lớp đá có kích thước lớn lớp Để phân bố áp lực mái dốc bảo vệ vật liệu đoạn gia cố, lớp đá lát khan có cấu tạo lớp đá dăm tầng lọc ngược Các khe lún bố trí với khoảng cách từ 15÷20m hình Hình Kết cấu bảo vệ đê đất đá lát khan 3 Đá xây nơi có tác động mạnh sóng dòng chảy, kích thước viên đá yêu cầu lớn phải sử dụng kết cấu đá xây Đối với đá lát khan, khe hở chèn viên đá nhỏ sau chít khe hở vữa; đá xây người ta đổ vữa đặt viên đá lên xây Do viên đá gắn kết cứng vào với nhau, đất phải ổn định xây Đá xây khung bê tông nhằm tăng khả chịu lực khắc phục lún cục Dưới lớp đá xây cấu tạo lớp đệm đá dăm kết hợp với vải lọc, bố trí ống thoát nước hợp lý để thoát nước phía 4 Bê tông đổ chỗ bê tông đổ chỗ thực mái dốc m=1÷2,5 Tùy theo khoảng cách khe kết cấu từ 3÷4m, diện tích ô từ 2,5÷4 m2 Khe kết cấu rộng từ 2÷3cm chạy ngang chạy dọc theo bờ; khe nhiệt cách từ 20÷30m Dưới lớp bê tông có cấu tạo tầng lọc ngược vải lọc Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Tài liệu địa chất Phục vụ cho giai đoạn lập Dự án Đầu tư, Ban chuẩn bị đầu tư dự án đạo triển khai khoan thăm dò địa chất dọc theo tuyến đê quai dự kiến, phục vụ cho thiết kế tuyến đê quai; khoan thăm dò địa chất khu vực mặt san lấp, phục vụ cho tính toán san lấp mặt bằng, cụ thể sau Tổng số hố khoan thăm dò 102 hố, hố khoan bình thường có chiều sâu từ 22,0m25,0m, hố khoan kiểm tra có chiều sâu từ 40,0m – 69,0m đó - Dọc theo tuyến đê dự kiến 58 hố khoan; - Khu vực san lấp mặt 44 hố khoan Đánh giá chung địa chất khu vực dự án Khu vực dự án vùng bãi bồi, tạo thành tương tác dòng chảy từ sông Thái Bình, sông Văn Úc với dòng thủy triều, sóng từ biển vào Tùy theo mùa, mùa lũ hàm lượng phù sa sông nhiều, chất bồi lắng tạo bãi chủ yếu lớp có hạt mịn, mang tính sét nhiều, mùa kiệt hàm lượng hạt lơ lửng sông ít, chất bồi lắng tạo bãi chủ yếu lớp có hạt thô cát sóng biển đưa Do nguyên nhân thành tạo khác nên địa chất bãi không đồng nhất, thường xen kẹp lớp có đường kính hạt khác nhau, không đồng đều, chiều dày lớp vị trí khác thường dày mỏng khác Bao gồm lớp sau Lớp - Bùn sét - Đất có màu xám, xám nâu, xám đen trạng thái chảy Lẫn hợp chất hữu phân huỷ; - Bề dày lớp thay đổi mạnh, từ HD57 đến HD55; trung bình 3,38m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 búa/30cm Lớp - Bùn sét pha - Đất có màu xám, xám nâu, xám đen trạng thái chảy Lẫn vỏ sò, vỏ hến hợp chất hữu phân hủy; - Đây lớp cuối cùng, đáy lớp chưa xác định Các hố khoan lại, bề dày trung bình - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 búa/30cm Lớp - Cát, cát pha - Đây lớp phân bố tương đối rộng khắp khu vực khảo sát, gặp hầu hết hố khoan; - Đất có màu xám, xám đen, xám nâu trạng thái chảy Lẫn vỏ sò, vỏ hến hợp chất hữu phân hủy Đôi chỗ xen kẹp dải bùn sét cát hạt mịn mỏng; - Tại hố khoan HB1, HB2, HB6, HB7, HB13, HB16, HB17, HB18 HB27 HB30 lớp cuối cùng, đáy lớp chưa xác định Các hố khoan lại bề dày trung bình 4,51m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 búa/30cm Đôi chỗ cho N30 12 búa/30cm 46 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Lớp 5a – Sét, sét pha dẻo mềm - Đất có màu xám, xám nhạt, xám nâu trạng thái dẻo mềm Lẫn kết vón ôxít sắt; - Lớp gặp hố khoan HD2, tồn dạng thấu kính phân bố từ độ sâu 8,1 11, 40 m Do thí nghiệm mẫu không nguyên dạng xác định số tiêu; - Thí nghiệm xuyên tiêu chuẩn SPT cho N 30 búa/30cm Lớp - Bùn sét - Đất có màu xám, xám nâu, xám đen trạng thái chảy; lẫn hợp chất hữu phân hủy; xen kẹp bùn sét pha; - Đây lớp cuối cùng, đáy lớp chưa xác định Các hố khoan lại, bề dày trung bình 6,02m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 búa/30cm Lớp - Sét dẻo chảy - Đất có màu xám, xám nhạt, xám xanh trạng thái dẻo chảy Lẫn hợp chất hữu phân hủy Đôi chỗ xen kẹp dải sét pha mỏng; - Tại hố khoan HD29, HD30 HB15, lớp cuối cùng, đáy lớp chưa xác định Tại hố khác bề dày lớp thay đổi mạnh, từ 1,20m HD21 đến 20,00 HD23 ; trung bình 6,14m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 búa/30cm, đôi chỗ cho N30 3, búa/30cm Lớp 7a - Sét pha nhẹ - Đất có màu xám nhạt, vàng nhạt trạng thái dẻo chảy; - Đây lớp có bề dày tương đối mỏng, trung bình 2,04m Gặp hố khoan từ HD31 HD35 , HB14 HB24; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 búa/30cm Lớp - Sét dẻo mềm - Đất có màu vàng, xám trắng, xám nhạt, nâu đỏ, xám nâu, xám xanh đến loang lổ; trạng thái dẻo mềm, đôi chỗ dẻo cứng; - Đáy lớp chưa xác định Các hố khoan lại, bề dày trung bình 4,22m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 10 búa/30cm, đôi chỗ cho N30 6,13,15 búa/30cm Lớp - Lớp sét pha 47 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng - Đất có màu xám trắng, vàng, xám nâu, nâu đỏ đến loang lổ; trạng thái dẻo mềm, đôi chỗ dẻo cứng Đôi chỗ lẫn ổ dải ôxít sắt dạng kết vón màu nâu; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 12 búa/30cm, đôi chỗ cho N 30 N 30 20 búa/30cm Lớp 9a - Lớp cát mịn - Cát có màu xám, xám đen đến xám nhạt, vàng mờ; kết cấu chặt vừa Đôi chỗ xen kẹp dải sét pha mỏng - Đây lớp có bề dày tương đối mỏng, trung bình 2,73m Gặp hố khoan HD18, HD39, HD48 HB31; Lớp 10 - Lớp sét dẻo cứng - Đất có màu vàng, xám trắng, xám nâu, nâu đỏ; trạng thái dẻo cứng; đôi chỗ lẫn ôxít sắt dạng kết vón màu nâu; - Bề dày trung bình lớp 8,13m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 15 búa/30cm Lớp 10a - Lớp sét, sét pha dẻo chảy - dẻo mềm - Đất có màu xám, xám nhạt, xám xanh trạng thái dẻo chảy - dẻo mềm Lẫn hợp chất hữu phân hủy Đôi chỗ xen kẹp dải sét pha mỏng; - Bề dày trung bình lớp 4,28m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 búa/30cm Lớp 10b - Lớp sét nửa cứng - Đất có màu vàng, xám trắng, xám nâu; trạng thái nửa cứng; đôi chỗ lẫn ổ dải ôxít sắt dạng kết vón màu nâu; - Lớp gặp hố khoan HD9, HD18 HB24 Tại hố HB24 lớp cuối cùng, đáy lớp chưa xác định Các hố khoan lại, bề dày trung bình là 7,6m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 21 62 búa/30cm Lớp 11 - Lớp sét pha nhẹ - Đất có màu xám, xám nâu, xám nhạt, xám trắng trạng thái dẻo mềm; - Lớp gặp hố khoan HD18, HD39, HD55, HB14 HB37 Tại hố HB14, lớp cuối cùng, đáy lớp chưa xác định Các hố khoan lại, bề dày trung bình là 4,63m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 12 21 búa/30cm 48 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Tên lớp đất 5a 7a 9a 10 10a 10b 11 Bảng Chỉ tiêu lý lớp đất Chỉ tiêu lý bh k N / m độ C kN/m2 11 19 12 11 E kN/m2 879 2606 3395 3395 937 1747 2914 2810 4302 4500 3133 2131 6476 5215 Cấp công trình Tại Quyết định số 57/QĐ-BNN-KHCN ngày 08 tháng 01 năm 2010 Bộ Nông nghiệp Phát triển nông thôn, ban hành Tiêu chuẩn kỹ thuật áp dụng cho Chương trình củng cố, bảo vệ nâng cấp đê biển, quy định phân cấp đê biển xác định tiêu chuẩn an toàn Theo quy định trên, tuyến đê quai lấn biển Tiên Lãng bảo vệ vùng có công, nông nghiệp phát triển với số dân bảo vệ thuộc công trình cấp II, tương ứng với mức bảo đảm an toàn P=1% chu kỳ 100 năm xuất lần Cao trình đỉnh đê cao trình san Cao trình đỉnh đê Cao trình đỉnh đê quai xác định theo Tiêu chuẩn kỹ thuật áp dụng cho chương trình củng cố, bảo vệ nâng cấp đê biển từ Quảng Ninh đến Quảng Nam, ban hành theo Quyết định số 57/QĐ-BNN-KHCN ngày 08/01/2010 Bộ nông nghiệp Phát triển nông thôn Cao trình đỉnh đê xác định từ công thức Z dtk Z ntk Rsl a Trong đó - Z dtk Cao trình đỉnh đê thiết kế; - Zntk Cao trình mực nước thiết kế MNTK, cao trình mực nước biển tổng hợp ứng với tần suất thiết kế mực nước biển tổng hợp mực nước tổng hợp mực nước triều, mực nước dâng bão, mực nước biển dâng biến đổi khí hậu; - Rsl Chiều cao sóng leo lên mái đê; 49 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng - a Trị số gia tăng độ cao an toàn công trình cấp II có a=0,5m Xác định mực nước biển thiết kế Zntk - Từ đường tần suất mực nước tổng hợp xây dựng cho vùng biển, xác định mực nước tổng hợp thiết kế ứng với tần suất thiết kế P=1% Z ntk Ztk1% 3,8m Xác định chiều cao sóng leo Sử dụng mô hình SWAN 2D Hà Lan để tính với nội dung sau - Xác định chiều cao sóng nước sâu phía trước công trình Hs=1,68m; - Tính truyền sóng nước sâu sóng nước nông phía trước công trình Hn=1,54m; - Xác định chiều cao sóng leo lên công trình, kết Rsl=3,2m Xác định cao trình đỉnh đê Z dtk Z ntk Rsl a 3,8 3, 0,5 7,5 HHĐ Xác định cao trình san thiết kế Cao trình san thiết kế chọn nguyên tắc Nền sân bay cao nước biển thiết kế để đảm bảo sân bay không bị ngập nước Phần cao mặt san gọi “đê” có tác dụng chống sóng, gặp bão cộng triều cường mức vượt tần suất thiết kế, sóng leo qua đỉnh đê, lượng nước vượt qua đê thoát trở lại biển qua hệ thống thoát tiêu sát chân đê Với quan điểm trên, chọn cao trình san lớn mực nước biển thiết kế có xét biến đổi khí hậu Z sn Z ntk 1, 3,8 1, 5, 0m Chọn cao trình san là 5,0m, phù hợp với công trình ven biển Hải Phòng Một số phương án đề xuất hội thảo Phương án tuyến Đã có phương án tuyến đề xuất, sau phân tích lựa chọn nhà Tư vấn lựa chọn phương án hình có thông số sau Phần diện tích dự kiến làm sân bay nằm hoàn toàn phía đê biển tại, tổng chiều dài đê quai lấn biển 24,3 km chia làm ba đoạn sau hình - Đoạn 1 Dọc theo cửa sông Văn Úc, giáp với tuyến đê biển tại, dài - Đoạn 2 Chính diện với biển dài - Đoạn 3 Dọc cửa sông Thái Bình, giáp với tuyến đê biển tại, dài Tổng diện tích vùng san lấp mặt xây dựng sân bay là 50 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Hình Mặt phương án tuyến phương án chọn Một số phương án kết cấu đề xuất [2] Kết cấu đê đất Kết cấu đề xuất vào lý sau hình 51 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng - Kết cấu thân đê đất đắp sử dụng phần bãi không thường xuyên ngập nước, có cao trình từ mặt từ cao trình 0,00 trở lên; - Kết cấu đê đất đắp, xem kết cấu truyền thống, áp dụng xây dựng hầu hết tuyến đê sông, đê biển Việt Nam; - Dự kiến mặt cắt đê đất đắp phạm vi có cao độ cao trình 0,00m, không thường xuyên ngập nước +7,50 +6,5 +5,00 +4,50 +2,00 -1,0 Hình Mặt cắt ngang đê đất Kết cấu đê đá đổ Kết cấu đề xuất vào lý [2] Kết cấu đê biển đá đổ áp dụng nhiều nước, có Hà Lan dùng xây dựng tuyến đê biển Bắc, Hàn Quốc sử dụng đê đắp đê quai lấn biển Seamangeum Mặt cắt ngang đê có mái m=4,0; bố trí cửa rộng 3,0m để giảm lượng sóng, mái m=2,0 mái đá đổ tự nhiên, hình +7,50 +6,5 +4,50 +5,00 +2,00 +0,00 Hình Mặt cắt ngang đê đá đổ Kết cấu đê túi vải địa kỹ thuật chứa cát Kết cấu đề xuất vào lý sau [2] Kết cấu đê biển túi vải địa kỹ thuật chứa cát Geotube áp dụng làm kết cấu đê quai lấn biển, công trình bảo 52 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng vệ bờ nhiều nước, có Trung Quốc, Hàn Quốc, Nhật Bản, Mỹ Ở Việt Nam Geotube áp dụng bảo vệ bờ sông Sài Gòn, áp dụng kết cấu đê quai lấn biển Cần Giờ, thành phố Hồ CHí Minh kết cấu trình bày chương I hình Kết cấu đê ống bê tông cốt thép Kết cấu đề xuất vào lý sau [2] Kết cấu đê quai ống bê tông cốt thép M300, đóng sâu xuống đảm bảo chịu tác động tải trọng ngang không bị đổ nghiêng, lòng ống chèn đá hộc đất, kết cấu đê quai áp dụng Mỹ hình Hình Mặt cắt ngang đê hệ thống ống BTCT Kết cấu đê quai Tiên Lãng khối rỗng Căn kết cấu khối rỗng phân tích, đề xuất chương II, qua tính toán thử nghiệm cho kết kích thước bố trí khối hình Hình Ứng dụng khối BTCT rỗng cho đê quai Tiên Lãng 53 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Tính toán thử nghiệm chia kích thước khối bố trí khối Các khối rỗng áp dụng vào thực tế cần phải tiến hành tính toán để xác định kích thước khối bố tri khối “tối ưu” Trong tính toán, nội dung tính toán ổn định quan trọng áp dụng vào vị trí xây dựng địa chất yếu Tính toán thực nghiệm thực theo phương pháp Gerxevanop, sau kiểm tra lại kết tính theo phần mềm Geoslope Công thức kiểm tra ổn định Khi tính toán ổn định chung công trình theo sơ đồ trượt sâu với giả thiết mặt trượt cung tròn phương pháp Terxhaagi cần thỏa mãn điều kiện sau nc M tr K R Gi cos itgi Cili R Gi sin i K m M g kn nc nmd kn 1x1, 25x0,85 x1,15 1,06 1,1 m 1,15 Trong đó nc - hệ số tổ hợp tải trọng, nc = tổ hợp bản; n - hệ số vượt tải, n = 1,25; kn - hệ số đảm bảo, kn = 1,2 công trình cấp II; m - hệ số điều kiện làm việc, m = 1,15; md - hệ số phụ điều kiện làm việc, md = 0,75 tính ổn định trượt sâu; Mtr, Mg - Tổng mô men lực gây trượt lực giữ ứng với tâm cung trượt Mtr = R. Mg = R. + + Qci R - bán kính cung trượt m; gi - tổng trọng lượng lớp đất, cấu kiện công trình hoạt tải phạm vi cột đất thứ i; i - góc nghiêng so với đường nằm ngang đường tiếp tuyến với cung trượt giao điểm cung trượt với đường tác động lực gi, góc đường thẳng đứng với bán kính R vẽ qua giao điểm trên i arcsin xi R xi - khoảng cách theo đường nằm ngang từ tâm quay O đến đường tác động lực gi; li - chiều dài đoạn cung đáy cột đất thứ i m; Qci lực kháng cọc 54 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Kết tính toán ổn định Kết tính - Tâm trượt O1 +7;-19,75 k=2,16 - Tâm trượt O2 +8;-10,25 k=2,07 - Tâm trượt O3 +9;+0,75 k=2,70 - Tâm trượt O4 +6;-10,25 k=1,68 - Tâm trượt O5 +2;-10,25 k=2,72 Omin 1,68 O4 6; 10,25 Hình Sơ đồ kiểm tra ổn định trượt cung tròn 55 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Hình Tính toán kiểm tra ổn định theo Geoslope Nhận xét Kết tính cho thấy việc chọn kích thước bố trí khối hình chưa phải tối ưu; áp dụng vào thực tế cần tính toán thực nghiệm thêm Khái toán kinh phí xây dựng - Căn kết cấu đề xuất, bóc tách khối lượng cho 1m dài đê; áp dụng định mức, đơn giá hành xác định chi phí trực tiếp bảng - Tổng hợp dự toán, kết cho bảng 1, giá trị xây lắp + Cho 1m dài đê là + Tổng chi phí xây dựng cho 22,3km là xấp xỉ tỷ đồng - Nếu so sánh với dự kiến phương án kết cấu đề xuất, lựa chọn [2] tổng kinh phí đầu tư cho toàn tuyến 22,3km khoảng tỷ đồng cho thấy phương án kết cấu đề xuất chắn giảm mức đầu tư tỷ đồng Kết luận kiến nghị Qua kết nghiên cứu cho thấy, kết cấu khối rỗng ứng dụng vào thực tế chắn đem lại hiệu cao kinh tế kỹ thuật xây dựng công trình đất yếu nói chung công trình đê biển nói riêng 56 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng BẢNG 1 BẢNG TỔNG HỢP DỰ TOÁN CÔNG TRÌNH ĐÊ QUAI TIÊN LÃNG Khoản mục chi phí STT Ký hiệu Cách tính Thành tiền I CHI PHÍ TRỰC TIẾP Chi phí Vật liệu VL A + Theo đơn giá trực tiếp A1 Bảng dự toán hạng mục Chi phí Nhân công NC B + Theo đơn giá trực tiếp B1 Bảng dự toán hạng mục Chi phí Máy thi công M C + Theo đơn giá trực tiếp C1 Bảng dự toán hạng mục Chi phí trực tiếp khác TT VL + NC + M x 2% Cộng chi phí trực tiếp T VL + NC + M + TT II CHI PHÍ CHUNG C T x 5% III THU NHẬP CHỊU THUẾ TÍNH TRƯỚC TL T+C x 5,5% Chi phí xây dựng trước thuế G T+C+TL THUẾ GIÁ TRỊ GIA TĂNG GTGT G x 10% Chi phí xây dựng sau thuế Gxdcpt G+GTGT Chi phí xây dựng lán trại, nhà tạm Gxdnt Gxdcpt x 1% Gxd Gxdcpt + Gxdnt IV V VI TỔNG CỘNG Bằng chữ Một trăm mười bốn triệu không trăm bảy mươi sáu nghìn năm trăm năm mươi mốt đồng chẵn./ 57 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng BẢNG 2 DỰ TOÁN CHI TIẾT CÔNG TRÌNH ĐÊ QUAI TIÊN LÃNG Mã số STT Đơn giá Tên công tác / Diễn giải khối lượng Đơn vị Khối lượng Vật liệu Đơn giá Nhân công Thành tiền Máy Vật liệu Nhân công Máy thi công Khối I Lắp dựng ván khuôn Lắp dựng cốt thép Đổ BT M300 Vận chuyển khối I Lắp đặt khối I 100m3 t 0,2 0,4704 m2 3,92 k=2 k=2 0,4 0,4 Cộng Khối II Lắp dựng ván khuôn Lắp dựng cốt thép 100m3 t 0,208 0,48922 Đổ BT M300 m2 4,0768 Vận chuyển khối II 0,4 Lắp đặt khối II k=2 k=2 0,4 Cộng Khối III Lắp dựng ván khuôn Lắp dựng cốt thép Đổ BT M300 Vận chuyển khối III Lắp đặt khối III Cộng 100m3 0,175 t 0,4116 m2 3,43 k=2 k=2 0,4 0,4 58 Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Tường chắn sóng Lắp dựng ván khuôn 100m2 0,147 Lặp dựng cốt thép t 0,293 Đổ bê tông M300 m3 0,975 Cộng Đắp cát công trình m3 14, Đáp đá hộc m3 19, Cộng 1-6 59 Mục lục Tài liệu tham khảo [1] Phạm Văn Giáp, Nguyễn Ngọc Huệ , Nguyễn Hữu Đẩu, Đinh Đình Trường; Bể cảng đê chắn sóng, nhà xuất Bản xây dựng, Hà Nội năm 2000; [2] Hội thảo xin ý kiến kết cấu đê quai lấn biển Tiên Lãng, HP, 27/10/2011; [3] Liên danh Viện thủy công - Công ty TNHH tư vấn công nghệ kè bờ Minh Tác Công ty cổ phần tư vấn Việt DELTA; Báo cáo tóm tắt phương án đề xuất, tổng dự toán phương án 6A + 7A, Dự án đầu tư xây dựng tuyến đê biển Nam Đình Vũ, HN 03/2012; [4] Nguyễn Văn Ngọc, phân tích số dạng kết cấu đê biển đề xuất dùng cho đê Nam Đình Vũ, Tạp trí KHCNHH, 2016; [5] Nguyễn Văn Ngọc, Chủ nhiệm thiết kế sở Dự án đầu tư xây dựng tuyến đê biển Nam Đình Vũ, HP 02/2011; [6] Tải trọng tác động do sóng tàu lên công trình thủy; Tiêu chuẩn thiết kế, 22TCN 222-95, Hà Nội 1996; [7] Trung tâm khoa học triển khai kỹ thuật Thủy lợi, Thiết kế sở phương án đê đất; Dự án đầu tư xây dựng tuyến đê biển Nam Đình Vũ, HP 02/201 60 [...]... kè hình - Chân đê kiểu chìm lõm đá hộc hình thành chân đê hình thang ngược, ứng dụng cho vùng địa chất yếu Bề rộng bảo vệ chân đê từ 2÷3 chiều cao sóng, chiều dày từ 2÷3 chiều dày kè hình Hình Chân đê kiểu nổi và kiểu chìm 7 Chương 1 Tổng quan về kết cấu đê quai lấn biển 2 Chân đê sâu Trong vùng bãi bị xói lở mạnh, để tránh moi hẫng đất nền khi mặt bãi bị xói sâu, cần sử dụng. .. về kết cấu đê quai lấn biển vì vậy có thể sử dụng kết cấu đê đá đổ có kết cấu bảo vệ mặt đê, như vậy đá đổ thân đê không phải sử dụng những viên đá có kích thước lớn, thuận tiện cho thi công, tuy nhiên khối lượng vật tư tăng đáng kể do phải mở rộng mặt cắt đê hình +8,80 +4,50 +7,80 +5,50 +2,00 +0,00 Hình Kết cấu đê đá đổ có sử dụng kết cấu bảo vệ mặt đê Giải pháp kết cấu đê bằng tường... dụng chân khay cắm sâu hình Hình Chân đê kiểu mũi cắm sâu - Chân đê bằng cọc gỗ, cọc bê tông cốt thép loại chân đê này được dùng khi nền đất dính dễ đóng cọc hình - Chân đê bằng ống buy chân đê bằng ống buy bên trong chèn đá hộc; hình thức này được sử dụng càng thuận lợi nếu nền là cát dễ dàng hạ chìm ống buy hình Hình Chân đê kiểu cọc và chân đê bằng ống buy tông atphan Kết cấu chân đê đất chân khay Để đảm bảo ổn định cho đê đất, cần lựa chọn hình thức kết cấu chân đê hợp lý tùy thuộc tình hình xói lở, chiều cao sóng và chiều dày của thân đê 1 Chân đê nông Tại vùng mức độ xói lở không nghiêm trọng, chân đê chỉ có nhiệm vụ chống đỡ dòng chảy tạo ra do sóng ở chân đê, thường sử dụng kết cấu đá hộc - Kiểu chân đê nổi lồi đá hộc được phủ phẳng... dựng Như vậy giải pháp này chỉ sử dụng trong những điều kiện đặc biệt như mặt bằng chật hẹp, yêu cầu độ sâu trước đê lớn - Giải pháp kết cấu đê kết hợp do tận dụng được hài hòa ưu điểm giữa móng nông và móng sâu cho phép tiết kiệm khối lượng vật tư, thi công nhanh, vì vậy giảm được kinh phí đầu tư xây dựng; có thể được nghiên cứu ứng dụng xây dựng đê quai lấn biển trên nền địa chất yếu; Song đề... chống trượt hình Với kết cấu này, thân đê có thể thi công hoàn toàn bằng cát, vì vậy cho phép đầm nén thuận lợi Lớp mặt kết cấu đá đổ phía biển cần sử dụng đá có kích thước và trọng lượng lớn để bảo vệ [4], [5] 9 Chương 1 Tổng quan về kết cấu đê quai lấn biển +5,64 +7,5 +4,14 +6,0 +3,14 +5,0 m=3 +0,14 +2,0 m =1 ,25 m 2 61 61 m= =1 -1,86+0,0 Hình Kết cấu đê mái nghiêng sử dụng Phân tích, so sánh các phương án kết cấu đê theo các tiêu chí kinh tế, kỹ thuật, thi công, tác động môi trường, khai thác sử dụng đã được trình bày chi tiết trong [4] ở đây chỉ rút ra một số kết luận chính như sau - Giải pháp kết cấu đê đất, đê đá là những kết cấu truyền thống đã được sử dụng lâu đời, vì vậy đã có được rất nhiều nghiên cứu giải pháp kết cấu bảo vệ mái đê, kết cấu chân đê, ... lực đất chủ động, vì vậy phải sử dụng khối đá gia trọng phía trước và hệ thống giảm tải phía sau kết hợp lăng thể đá giảm tải [4], [5] Hình Giải pháp kết cấu đê tường cọc Giải pháp kết cấu đê mái nghiêng Giải pháp kết cấu đê này thực chất là đê đất, tuy nhiên chân đê sử dụng kết cấu đê đá đổ đến cao độ có thể thi công đê đất thuận tiện Do nền địa chất yếu, sử dụng hàng cọc xiên chụm đôi với... của mái nghiêng gây ra nhiều rủi ro cho đê biển Bằng chứng đã có một vài đoạn đê, thậm chí cả tuyến công trình bảo vệ mái nghiêng bị sạt lở, kéo theo phá hủy các công trình được bảo vệ Có 5 tác động của sóng lên kết cấu đê mái nghiêng - Áp lực sóng phân bố; - Áp lực đẩy nổi; - Lực dội đập; - Leo và tụt theo mái; - Tác động của dòng chảy Thứ tự 1 1 Bảng Các tác động chính của sóng vào mái nghiêng... cẩu hình Hình Cấu kiện Basalton - Cấu kiện Hydro-blocks Cấu kiện này có ưu điểm tăng ổn định do ma sát Chúng được sản xuất trong nhà máy có sự kiểm soát chặt chẽ, đảm bảo chất lượng cao Hình dạng cấu kiện Hydro-blocks cho phép dễ dàng thích ứng với hình dáng khác nhau của thân đê Với diện tích đê khoảng 1,3m2, cần khoảng 25 cấu kiện, chiều cao mỗi cấu kiện từ 15 đến 50cm hình Hình - Xem thêm -Xem thêm Nghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai lấn biển tiên lãng, Nghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai lấn biển tiên lãng,
TN&MT - Gần 200 năm từ khi cụ Nguyễn Công Trứ chiêu mộ dân nghèo đắp đê, bắt đầu cuộc chiến lấn biển, khát vọng chinh phục bãi bồi ở vùng đất Kim Sơn Ninh Bình vẫn được tiếp nối bằng mồ hôi, nước mắt, thậm chí cả những phần máu thịt của những con người kiên cường ra quai đê, lấn biển… Lùi về lịch sử từ những năm 1827, nhận thấy việc khai khẩn những rẻo đất hoang màu mỡ, kết hợp quai đê lấn biển theo các cồn cát đã được pha trộn đất phù sa trải dài khắp vùng cửa các dòng sông lớn đổ ra biển là một cách xóa đói giảm nghèo khá nhanh... khi đang quai đê Tiền Hải nay thuộc Thái Bình, Doanh Điền sứ Nguyễn Công Trứ đã cho người sang Ninh Bình khảo sát thực địa, để chuẩn bị khẩn hoang sao cho xứng tầm với vùng đất giàu tiềm cửa biển ở Ninh Bình thời ấy vốn có tiếng là dữ dằn, gió to, sóng lớn. Cả một vùng bãi bồi, sình lầy, lau lách trải ra mênh mông, nên việc đi lại để quai đê đắp đường, đào sông gặp không ít khó khăn. Song nhờ tài tổ chức và vận dụng linh hoạt, sáng tạo với 63 vị chiêu mộ, thứ mộ, nhân đinh, sau hơn 1 năm, cụ Nguyễn Công Trứ đã hoàn tất việc quai đê, lấn biển Kim Sơn. Vùng bãi bồi Kim Sơn Kể từ đó đến nay, Kim Sơn trải qua thêm nhiều lần quai đê, lấn biển, chinh phục bãi bồi, xây dựng hệ thống giao thông, thủy lợi như ắp đê Bình Minh BM1 năm 1959 - 1960; đắp đê BM2 năm 1981; đắp đê BM3 năm 2008 và năm 2020 đắp đê BM4... đã tăng diện tích tự nhiên của huyện Kim Sơn lên bốn lần. Toàn huyện giờ đã có hệ thống đê quai dài hàng chục km, kiên cố che chắn sóng gió trong những ngày mưa bão. Những con đê quai bằng rọ đá, bề mặt đổ bê-tông sừng sững như bức tường thành cũng chính là giao thông huyết mạch của các xã ven biển…Mồ hôi, nước mắt, nụ cười... chinh phục biển cảLịch sử đã ghi nhận các thế hệ người dân Kim Sơn tiên phong, gắn bó với hành trình quai đê lấn biển, với biết bao mồ hôi, công sức, máu và nước mắt, đấu tranh vật lộn, vượt qua những khắc nghiệt của gió, của nước lập nên những kì tích trước thiên nhiên. Những người quai đê, lấn biển, có người thành công, có người thất bại. Và những ai không gục ngã, kiên cường đi trọn được con đường đầy thử thách này đã viết nên trang sử lấn biển đầy tự hào từ chính nghị lực và mồ hôi, nước mắt mình...Theo lời kể của người dân nơi đây, đê Bình Minh 1 được hình thành từ trước những năm 1970, hồi ấy máy móc chưa có, tất cả công việc lấn biển đều làm bằng sức người. Cả trăm lao động như bức tường thành trước sóng gió, xúc từng xẻng đất, chuyền tay nhau đổ xuống biển. Cứ hùng hục sức người đấu với biển cả. Từng hòn đất được đào lên, chuyền tay nhau ném xuống. Nhưng ác nỗi lúc đắp thủy triều cạn, sau một đêm triều vào thì sáng sau con đê mất đến bảy phần. Để đắp được một mét đê dưới bãi biển, đổ mồ hôi sôi nước mắt gấp ba, bốn lần trên đồng vẫn chưa xong. Có khi gặp bão tố dồn dập, tất cả ngậm ngùi nhìn đoạn đê mới tạm nổi lại bị sóng quật vỡ tan. Cứ thế, họ vẫn làm, làm bằng tất cả nghị lực và ý chí, con đê Bình Minh 1 cũng hình thành với chiều dài 7, năm vùng ven biển Kim Sơn lại được thiên nhiên ưu đãi, ban phát hàng trăm ha đất phù sa lấn ra biển. Ông Đoàn Quốc Trung - Phó trưởng phòng Phòng chống thiên tai, Sở NN&PTNT Ninh Bình - người đã đồng hành với hành trình quai đê đầy gian khổ ở vùng bãi bồi Kim Sơn chia sẻ, để giữ của “trời cho”, công cuộc quai đê, lấn biển tiếp tục là cuộc đấu quyết liệt với “thần” biển. Sau đê Bình Minh 1; đê Bình Minh 2 được đắp với chiều dài theo quy hoạch hiện nay là 25,2km. Đê Bình Minh 2 khớp nối với đê Bình Minh 1 tạo thành một vùng bãi bồi rộng 2000 ha trù phú thuộc địa bàn ba xã bãi ngang Kim Hải, Kim ông và Kim Trung. Đê Bình Minh IV đang trong quá trình triển khai Nhớ lại hồi quai đê Bình Minh 3, ông Trung bồi hồi, khó khăn nhất khi quai đê lấn biển là địa nền, địa chất ở các tuyến đê rất yếu. “Hồi đắp đê Bình Minh 3, tôi cùng ông chủ đơn vị thi công đê thời ấy - thường xuyên ăn ngủ lại hiện trường. Có những hôm đã đắp đê quai, bơm nước đến lại bị biển động lớn, sóng đánh đê quai vỡ sạch, nước tràn hết vào trong hồ móng, hôm sau lại phải bơm lại từ đầu”, ông Trung ông Trung, thời điểm tiến hành đắp đê Bình Minh 3 đã thuận lợi hơn rất nhiều so với trước do đã áp dụng được những công nghệ mới, tiến bộ khoa học kỹ thuật vào thi công. Nếu như trước đây đất đắp đê thường chuyển từ nơi khác đến, nhưng ở môi trường biển, nước thường xuyên lên xuống, có khi đất đổ xuống lại bị nước biển xâm nhập cuốn hết ra ngoài. Do vậy đơn vị thi công đã quyết định áp dụng “bơm đất tại chỗ để đắp đê”. Đê Bình Minh 3 hoàn thành đấu nối với đê Bình Minh 2 đã khoanh vùng đất lấn biển rộng hơn ha, nay là nơi nuôi trồng thủy hải sản của bà đê Bình Minh 4 vẫn trong quá trình triển khai, hàng chục km đê từ Bình Minh 1 ra Cồn Nổi đang kiên cường chặn đứng những ngọn sóng cuồn cuộn nối tiếp nhau mùa biển động. Bên trong, các đầm tôm, ngao bình yên chờ ngày thu hoạch. Dẫn chúng tôi đi tham quan bãi đầm lấn biển của mình, một người dân đang sản xuất tại vùng bãi bồi Kim Sơn rực ánh mắt nghị lực “Mang ý chí tiếp nối người xưa mở đất, người dân Kim Sơn năng động lợi dụng thủy triều để chuyển đổi đất bãi bồi, đất trồng cói trước đây kém hiệu quả sang nuôi tôm sú, nuôi tôm thẻ chân trắng, theo hình thức quảng canh, nuôi công nghiệp và nuôi theo dự án VietGAP”.“Đổi thay” đất bồi Việc người dân mở rộng nuôi trồng thủy sản ở vùng đê Bình Minh 1,2,3 và 4 đã khiến vùng đất này trở nên sôi động với hàng nghìn hộ làm nghề và tạo việc làm cho hàng chục nghìn người lao động từ dịch vụ nghề số liệu rà soát của UBND huyện Kim Sơn, đến nay, khu vực từ đê Bình Minh 2 đến Cồn Nổi có hàng nghìn hộ dân đang sử dụng khai thác và nuôi trồng thủy sản. Trong đó, khu vực từ đê Bình Minh 2 đến đê Bình Minh 3 có gần hộ với diện tích hơn khu vực từ đê Bình Minh 3 đến Cồn Nổi với diện tích gần với các tỉnh trong khu vực, nuôi trồng thủy sản ở Kim Sơn có nhiều thuận lợi bởi nơi đây giáp với vùng nội đồng nên có thể nuôi thả thủy sản dưới nhiều hình thức. Bên cạnh đó sự đầu tư lớn trong việc quai đê lấn biển đã giúp vùng nuôi trồng thủy sản của Kim Sơn có độ an toàn cao. Nhiều dự án đã và đang được triển khai ở vùng bãi bồi Kim Sơn Ông Đinh Việt Dũng, Bí thư huyện uỷ Kim Sơn cho hay, những năm gần đây, xác định kinh tế biển đóng một vai trò rất quan trọng trong nền kinh tế. Nhiều dự án đã và đang triển khai như Dự án nâng cấp đê Bình Minh; dự án cơ sở hạ tầng phục vụ nuôi trồng thủy sản, hải sản theo hướng công nghiệp vùng bãi bồi ven biển, dự án đường giao thông,… qua đó tạo điều kiện thuận lợi thúc đẩy phát triển kinh tế - xã hội nói chung và sản xuất, nuôi trồng, khai thác thủy, hải sản vùng bãi bồi nói riêng…Sắp tới, tỉnh Ninh Bình cũng hoàn thiện quy hoạch chi tiết cho vùng kinh tế bãi bồi Kim Sơn. Đó sẽ là cơ sở tạo ra các hành lang phát triển bằng hạ tầng giao thông, tạo khu dân cư mới. Đồng thời, mở ra cơ hội phát triển nông nghiệp công nghệ cao, công nghiệp phụ trợ… ở vùng bãi giờ về bãi bồi Kim Sơn, Ninh Bình chúng ta mới thấy cảm phục ý chí kiên cường lấn biển, mở đất đến cùng của bao thế hệ người nơi đây trước thiên nhiên khắc nghiệt và cả những “cơn sóng gió” trong lòng người. Đó là thế hệ con cháu những nông dân nghèo khổ từng theo cụ Nguyễn Công Trứ đi quai đê, lấn biển, mở mang đất mới. Và họ tiếp tục đổ mồ hôi, nước mắt theo bước chân tổ tiên mình...
Giữa tháng 2, khi những hộ dân ở xã Đông Hưng Tiên Lãng, Hải Phòng đóng cửa ngủ trưa, vợ chồng chủ đầm Lương Văn Trong ngồi bên ấm trà nóng kể về nỗi vất vả khi quai đê lấn biển từ cả chục năm trước. Theo người đàn ông tuổi lục tuần, tóc ngả bạc, gia đình ông là một trong những hộ đầu tiên ở xã Vinh Quang đứng ra xin nhận đầm. Thấy tôm cá ở biển nhiều trong khi gia đình với gần chục khẩu luôn đói, ông Rễ bố ông Trong động viên các con ra sức quai đê để giữ tôm cá phục vụ đánh bắt lâu dài. Từ ý tưởng táo bạo, năm 1988 gia đình ông được xã Vinh Quang giao chinh phục bãi bồi hoang vu rộng 100 ha. Ông Trong vẫn nhớ, hồi đó để làm được những bờ đê, gia đình đã huy động đến vài trăm người trong làng, chia thành nhiều tổ. Máy móc chưa có nên mọi việc đều dùng sức người. Suốt 12 năm từ năm 1988, hễ đắp được con đê trong buổi tối thì sáng sớm hôm sau lại bị sóng đánh văng. "Thấy các con nản lòng, ông cụ động viên rằng 12 năm loạn lạc chẳng nhẽ không có một năm bình yên? Nghe câu nói đó, anh em trong nhà thêm sức mạnh để dấn thân với nghề", ông Trong kể. Sau nhiều năm vất vả với nghề, vợ chồng ông chủ đầm Độ vẫn sống trong dãy nhà lợp bằng xi măng. Ảnh Hà vật lộn với chồng, bà Bèo cho hay ngày đó bãi bồi hoang vu, sâu đến ngực người. Mỗi lần ra cải tạo, bà và những người thân phải mặc bộ quần áo tẩm toàn dầu để tránh bị muỗi đốt. Để có tiền trả công cho những người trong làng và đầu tư vào đầm, gia đình bà đã vay mượn khắp nơi với lãi suất cao. Nhiều lúc, trong nhà không còn tiền đong gạo, bà cùng chồng phải đốn những buồng chuối xanh về nấu ăn qua ngày. "Những đứa trẻ nhà tôi hồi đó khổ lắm. Sáu đứa thì có đến 4 phải bỏ học giữa chừng để cùng cha mẹ ra đầm. May mắn sau này khi kinh tế ổn định hai đứa út được học lên đại học...", bà Bèo trải lòng. Suốt 20 năm làm đầm, bà bảo gặp không biết bao thiên tai. Hễ có đợt bão nào sắp đến, cả gia đình lại lo mất ăn mất ngủ. Năm 2005, trong một tuần có tới 3 cơn bão ảnh hưởng. Do tiếc của, chồng bà lao xuống đầm để chặn tôm cá trôi ra biển và suýt bỏ mạng. Nhiều người dân nơi đây cũng rơi vào cảnh tương tự. Nằm cách xa đầm nhà ông Đoàn Văn Vươn hộ bị cưỡng chế đầu tháng 1 không xa, ông Nguyễn Văn Phao được chính quyền giao cho 15 ha. Ông kể, sau khi đi bộ đội phục viên về, không có công ăn việc làm ổn định, gia cảnh khó khăn. Thấy ông Vươn thuê người đến đắp đê ông cũng nhận lời làm với khoản tiền công ít ỏi. Những ngày tháng làm gần đó, thấy bãi bên cạnh bỏ không, người đàn ông này đã đặt ra câu hỏi “Tại sao Vươn nó làm được mà mình thì không”? Khi được chính quyền đồng ý, ông Phao về động viên vợ con bán hết đồ đạc trong nhà để lấy tiền thuê thợ đắp các bờ bao. Những năm 1994, trong nhà không còn gì đáng giá, không đủ tiền tiếp tục đầu tư, vợ chồng ông lặn lội về thành phố vay anh vợ 100 triệu đồng để mua giống, dựng tạm chiếc lán ở ngoài đê để cả nhà cùng ở. Người dân Tiên Lãng chỉ sức tàn phá của cơn bão năm 2005 khiến nhiều hộ dân mất trắng của cải. Ảnh Hà Anh.“Tháng 3/1996 khi mọi việc đã hòm hòm thì chỉ một tháng sau cơn bão số 2 và 4 đổ bộ vào khiến đầm ngập trắng xóa. Toàn bộ của cải vốn liếng đầu tư năm đó mất trắng. Đứng trên đê nhìn cảnh đó tôi đã ngất lên ngất xuống…”, bà Phùng Thị Nhót, vợ ông Phao nhớ lại. Người phụ nữ 55 tuổi dáng vẻ lam lũ tâm sự, khi thấy chồng làm ăn thua lỗ, nhiều người thân trong nhà đã khuyên dừng việc làm đầm song không có hiệu quả. Bà Nhót dọa làm đơn ly dị nhưng chồng vẫn không lung lay ý chí. “Ông ấy từng tuyên bố vợ con thì có thể bỏ được chứ đầm thì không. Quả thực, hồi đó nhiều đêm tôi nằm khóc vì không biết phải làm sao. Vì nếu bỏ chồng thì thương mấy đứa con nheo nhóc…”, bà Nhót kể. Trong căn nhà lợp ngói xi măng tạm bợ từ năm 1996 đến nay, ông Phao cười buồn tâm sự, đến nay nhiều chủ nợ đã chấp nhận chỉ lấy lại vốn mà không đòi thêm bất cứ khoản tiền lãi nào. “Giờ gia đình chúng tôi chỉ nuôi khoảng con vịt để trang trải nợ nần chứ chẳng dám đầu tư mạnh vào khu đầm này vì huyện đã có quyết định thu hồi từ năm 2010. Sau vụ việc của gia đình nhà ông Vươn, nghe Thủ tướng nói thế tôi cũng mừng phần nào, nhưng đến nay vẫn chưa biết ra sao…”, ông chủ đầm ở xã Vinh Quang nói. Sau bao năm đi vay tiền đắp bờ chống lại những đợt sóng dữ, đến nay ông Nguyễn Bá Độ xã Đông Hưng không còn phải chịu những khoản nợ lớn nhưng cuộc sống không mấy dư giả. Hàng năm, tằn tiện và khéo léo chi tiêu gia đình cũng chỉ để ra được khoảng 100 triệu đồng. “Nghề này cũng như canh bạc vậy. Thời tiết thuận lợi thì còn được chứ nếu không thì vài năm tích cóp chỉ cần một vụ gặp bão có thể trắng tay”, ông Độ nói. Ông Phao bảo đến nay gia đình vẫn chưa dám đầu tư mạnh vào 15 ha bởi đã có quyết định thu hồi của chính quyền. Ảnh Hà năm đầu, sống trong chiếc lều đắp bằng đất ở đầm, bà Tuyến vợ ông Độ bảo, nhiều hôm đang ngủ nước dâng mấp mé sát cửa sổ. Để bảo toàn tính mạng, cả nhà lại phải chạy lên đê tránh lũ. Có đêm, nằm ôm con bà đã phải khóc thầm một mình vì chẳng biết chia sẻ nỗi khổ cực cùng ai. “Ông ấy dọa tôi như bao người đàn ông khác trong xã từng dọa rằng bỏ vợ được, nhưng đầm thì không”, bà Tuyến bùi ngùi kể. Sau những cơn bão năm năm 2005 bị thua trắng tay, chẳng còn chút tài sản nào để tiếp tục đầu tư, nhiều hộ đã phải gán nợ để đi làm thuê. Một số hộ thì mong nhượng lại để cho ai đó tiếp tục làm nhưng cũng không xong vì chẳng ai dám đứng ra liều mình với bão lũ. Gần 20 năm làm ăn vất vả, bà Tuyến bảo kinh tế gia đình đến nay không đến mức khó khăn. Song bà vẫn không quên được những hình ảnh gia đình phải thay nhau đi tát vét mong kiếm được những con tôm, con tép mang ra chợ để bán lấy tiền đong gạo. Thay lời những hội viên trong Liên chi hội nuôi trồng thủy sản huyện Tiên Lãng, ông Lương Văn Trong, Phó chủ tịch Liên chi hội bảo, những người làm đầm nơi đây ai cũng có những vất vả, thậm chí phải trả giá. Song, đến nay tất cả vẫn mong tiếp tục được đổ những giọt mồ hôi trên bãi bồi lấn biển năm xưa. Hà Anh
Đã 200 năm từ lúc Nguyễn Công Trứ chiêu mộ dân nghèo đắp đê, bắt đầu cuộc lấn biển, những người nông dân phía cuối nguồn châu thổ ở Bắc bộ vẫn mang trọn khát vọng mở đất. Họ kiên cường ra quai đê, lấn biển, không chấp nhận bữa đói bữa no trong mảnh đất đồng bằng ngày càng chật hẹp. Và khát vọng chinh phục bãi bồi ấy bao giờ cũng đẫm mồ hôi, nước mắt, thậm chí cả những phần máu thịt... - Kỳ 1 Cha, con và “cuộc chiến” lấn biển... Đứng trước bãi hoang trắng nước, ông Rễ bảo con rằng “Khoán 10, tư nhân được làm kinh tế rồi. Giờ nhà ta phải ra biển thoát nghèo thôi”. Và đó là cuộc trường chinh quai đê, lấn biển đẫm mồ hôi, nước mắt truyền từ đời cha đến đời con cháu ông Rễ. Lấn biển Tại sao cứ ì ạch đắp mãi rồi đê lại vỡ? ông Trong quyết định vượt sông sang Thái Bình xem người dân làm gì để giữ đê. Thấy cây bần, cây vẹt có tác dụng chắn sóng, ông nhổ mót cây nhỏ đem về trồng. Một chuyến, ông bị người dân sở tại bắt vào đồn công an. Chỉ khi bố ông đến giải thích, ông mới được thả. Cảm phục ý chí của ông, dân Thái Thụy còn tặng ông cả thuyền quả bần về ươm giống. Đó là kỷ niệm không phai trong hành trình lấn biển của cha con ông Trong bồi hồi kể nhà mình ở xã Nam Hưng, huyện Tiên Lãng, Hải Phòng có tám nhân khẩu, ruộng một mẫu, nhưng đất nhiễm chua mặn năng suất thấp, làm không đủ ăn. Còn biển thì cá tôm quá nhiều. Ông Rễ bảo các con trai “Phải đắp đê, quây bãi lại để giữ tôm cá, đánh bắt lâu dài. Muốn có của ăn, cái mặc thì phải làm chủ, chứ trông vào con nước triều sẽ nghèo mãi”. Ngay hôm sau bố con ông Trong lên xã Nam Hưng xin nhận đầm. Trước ý tưởng táo bạo của họ và bãi bồi hoang vu còn mênh mông, chính quyền giao hẳn cho bố con ông 100 ha. Không thể làm một mình được, ông Rễ kêu gọi người em ruột Lương Văn Hùng góp vốn cùng tham gia. Họp gia đình, ông Rễ nói quyết tâm “Đã làm thì phải làm cho ra tấm ra món, đừng mang tiếng lũ gàn dở đem vàng ròng, thóc thịt ném ra biển”. “Lúc đó người làm cho gia đình tôi đông hàng trăm người. Họ chia thành tổ, thành nhóm đào đất, quai đê. Chẳng có máy móc gì. Cứ hùng hục sức người đấu với biển. Từng hòn đất được đào lên, chuyền tay nhau ném xuống. Nhưng ác nỗi lúc đắp thủy triều cạn, sau một đêm triều vào thì sáng sau con đê mất đến bảy phần. Để đắp được một mét đê dưới bãi biển, đổ mồ hôi sôi nước mắt gấp ba, bốn lần trên đồng vẫn chưa xong”- ông Trong xúc động nhớ. Ròng rã suốt từ năm 1988 sang năm 1989 con đê mới thành hình. Ngày nó nhô lên mặt nước thì tiền bạc, kho thóc trong nhà bố con ông Trong cạn kiệt đến nỗi phải vay mượn khắp nơi. Con đê cao gần 2m, mặt đê cỡ 1,5-2m và không biết bao nhiêu công sức, tiền của đã được đắp vào. Đắp xong đê, đứng nhìn cá tôm nhảy rào rào trong đầm, nhà ông Rễ mừng đến rơi nước mắt “Chuyến này chả mấy chốc trả hết nợ”. Nhưng trời, biển đâu dễ thua sức người. Vụ đầu chưa kịp thu hoạch thì cơn bão số 6 năm 1989 đã xóa sạch tất tật. Cá tôm lại trở về với biển. Con đê đất cũng hòa tan vào sóng khi cơn bão qua. “Đã cưỡi lên lưng hổ rồi, đâm lao thì phải theo lao, nếu không làm tiếp thì lấy đâu mấy tấn thóc, mấy chục chỉ vàng mà trả nợ, rồi lại mang tiếng là gàn dở, điên khùng nữa” - ông Trong nhớ lời bố Rễ khích lệ sau thất bại đầu tiên. Bão qua, cả nhà lại tiếp tục lao ra biển, thuê cả trăm người làm đê mới. Nhưng việc đắp đê biển sau trận bão càng khó hơn. Nền bãi yếu khiến con đê mong manh nhiều lần sụt lở, vỡ bục. Một số anh em đã nản lòng, bỏ cuộc! Hùng hục đắp đê, trồng rừng mãi đến những năm 1992-1993, UBND huyện quyết định giao 50ha đất bãi ven biển cho họ. Để làm hiệu quả, ông Rễ chia đều 50ha đầm cho người em 20ha và năm con cháu của mình để từng người có trách nhiệm và nếu có bão thì có thể mất đầm này còn đầm khác. Phóng to Ông Toảnh trên cánh đồng tôm được tạo nên bằng công sức mở đất biển từ đời cha mình - Ảnh Quốc Việt“Cuộc chiến” trước biển Công cuộc quai đê, trồng rừng, khai hoang, lấn biển là cuộc đấu quyết liệt với “thần” biển, và hầu như bất cứ người dân nào thời đầu vươn ra biển đều phải hứng chịu những thất bại đau thương. Và người em út Lương Văn Toảnh của ông Trong là người “dính đòn” đau nhất. Toảnh khi đó vừa tròn 20 tuổi cũng được ông Rễ chia phần 6 ha đầm bãi. Nhận đầm rồi nhưng làm thế nào để khuất phục biển? Đó là câu hỏi ngày đêm Toảnh trăn trở. Anh bỏ cả tháng trời để ăn bên biển, nằm bên đê, lắng nghe từng cơn sóng thủy triều, mải miết tìm bài giải. Không có kinh nghiệm nào để học theo, nhưng những ngày đêm mày mò nhặt con ốc, bắt con cua biển suốt từ khi 15 tuổi đã nuôi ý chí khát khao chinh phục biển trong Toảnh. Khi đã thuộc từng con nước, Toảnh quyết “Phải tiếp tục đắp đê kiên cố mới chắc ăn”. Anh kể suy nghĩ của mình “Đê đắp ổn rồi, mình lại phải tính sử dụng hiệu quả. Nếu chỉ đóng - mở cống để tôm cá tự nhiên vào rồi giữ lại thì chẳng ăn thua”. Năm 1994-1995, Toảnh khăn gói rời làng vào Khánh Hòa học hỏi việc nuôi trồng thủy sản... Về làng, Toảnh tiếp tục nuôi quảng canh nhưng “cải tiến” bằng cách thả thêm giống, tăng thức ăn cho tôm, cá. Cứ tích lũy dần đến năm 2003, anh quyết định đầu tư lớn để nuôi tôm công nghiệp, ươm tôm giống. Đầu tiên, anh bỏ gần 5 tỉ đồng để dựng cột, kéo đường điện ba pha từ làng ra bãi. Rồi nạo vét cải tạo 1 ha đầm theo tiêu chuẩn nuôi công nghiệp, xây thêm nhà xưởng, ô chuồng ươm giống tôm. Vừa làm, vừa tích lũy, đầu tư và đến năm 2005 toàn bộ diện tích 6ha đầm của anh đã thành vùng tôm công nghiệp. Lúc này số vốn cộng với khoản nợ đầu tư 6ha đầm tôm công nghiệp đã lên tới gần 20 tỉ đồng. Nhưng trận siêu bão số 6 năm 2005 khắc nghiệt đã biến 6ha đầm tôm công nghiệp quy mô nhất nhì huyện lúc bấy giờ thành bình địa. Toảnh cắn răng đến bật máu, nước mắt hòa cùng nước biển! “Nếu không làm lại thì không thể sống được, chỉ có chết mới hết nợ”. Ngay sau bão, Toảnh lại phải thế chấp nhà cửa, vay mượn để làm lại, bắt đầu vẫn từ con đê. Và nỗi đau trong cuộc tái thiết này lại ập đến khi hai người làm của anh là Nguyễn Văn Nhất và Nguyễn Văn Báu đã bỏ mạng vì bảo vệ con đê trước biển. Cuối năm 2006, cuộc tái thiết 6 ha đầm tôm công nghiệp hoàn thành. Rồi câu chuyện những ngày đầu năm khi Thủ tướng kết luận về vụ việc ở Tiên Lãng đã giúp anh em ông Trong, ông Toảnh - những người nông dân mấy mươi năm đi lấn biển mở đất có thêm niềm tin, để thề trước bàn thờ ông Rễ bố mình rằng “Chúng con sẽ lại tiếp tục đổ mồ hôi trên bãi bồi lấn biển”... __________ “Ngày xưa, tay tôi móc từng cục đất đắp đê lấn biển chỉ mong có cái bén lửa nồi cơm. Giờ tôi vẫn ra biển vì còn bao người trông cậy mình”. Trên bãi bồi Tiền Hải, Thái Bình có một người quai đê, lấn biển thành công đã được vinh danh... Kỳ tới Bàn tay tóe máu
Bạn đang xem 20 trang mẫu của tài liệu "Đề tài nghiên cứu khoa học Nghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai Tiên Lãng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênNội dung text Đề tài nghiên cứu khoa học Nghiên cứu một số hình thức đê quai lấn biển, ứng dụng cho đê quai Tiên LãngTRƯỜNG ĐẠI HỌC HÀNG HẢI VIỆT NAM KHOA CÔNG TRÌNH THUYẾT MINH ĐỀ TÀI NCKH CẤP TRƯỜNG ĐỀ TÀI NGHIÊN CỨU KHOA HỌC NGHIÊN CỨU MỘT SỐ HÌNH THỨC ĐÊ QUAI LẤN BIỂN, ỨNG DỤNG CHO ĐÊ QUAI TIÊN LÃNG Chủ nhiệm đề tài NGƯT NGUYỄN VĂN NGỌC Hải Phòng, tháng 4/2016Mục lục Mục lục Mục lục i Danh sách bảng biểu ii Danh sách hình ảnh iii Danh sách thuật ngữ, chữ viết tắt iv Mở đầu 1 1. Tính cấp thiết của đề tài 1 2. Tổng quan về tình hình nghiên cứu thuộc lĩnh vực đề tài 1 3. Mục đích của đề tài 1 4. Đối tượng và phạm vi nghiên cứu 1 5. Phương pháp nghiên cứu 1 6. Ý nghĩa khoa học và thực tiễn 1 Chương 1 2 Kết cấu đê truyền thống tại Việt Nam 2 Kết cấu đê khu kinh tế Nam Đình Vũ 3 Nhận xét các phương án kết cấu được sử dụng 11 Chương 2 13 Tính toán đê mái nghiêng 13 Tính toán đê thẳng đứng 35 Đề xuất giải pháp kết cấu mới 43 Chương 3 45 Giới thiệu về dự án [2] 45 Các số liệu phục vụ cho tính toán [2] 45 Một số phương án đề xuất trên hội thảo 50 Tính toán thử nghiệm chia kích thước khối và bố trí khối 54 Khái toán kinh phí xây dựng 56 Kết luận và kiến nghị 56 Tài liệu tham khảo 60 iDanh sách bảng biểu Danh sách bảng biểu Bảng Các tác động chính của sóng vào mái nghiêng 13 Bảng Hệ số Kv 17 Bảng Giá trị Prel kpa 17 Bảng Hệ số ξ của Kanarski 19 Bảng Các hệ số k1; k2 và k 22 Bảng Hệ số kv 22 Bảng Hệ số kp 22 Bảng Hệ số k 23 Bảng Hệ số n 25 Bảng Hệ số kfr của công thức 26 Bảng Hệ số kfr của công thức 26 Bảng Hệ số kd của công thức 27 Bảng Hệ số krr cho công thức 27 Bảng Hệ số k cho công thức 28 Bảng Giá trị S của công thức Vander - Meer’s 29 Bảng Chỉ tiêu cơ lý của các lớp đất 49 iiDanh sách hình ảnh Danh sách hình ảnh Hình Mặt cắt ngang điển hình và mặt bằng kết cấu đê biển Hải Hậu 2 Hình Giải pháp kết cấu đê đất 3 Hình Mặt cắt ngang đê đất, thi công thân đê bằng các túi cát bằng vải địa kỹ thuật 3 Hình Kết cấu bảo vệ đê đất bằng đá lát khan 4 Hình Cấu kiện Basalton 5 Hình Cấu kiện Hydro-blocks 5 Hình Cấu kiện TSC 6 Hình Cấu kiện Âm dương 6 Hình Chân đê kiểu nổi và kiểu chìm 7 Hình Chân đê kiểu mũi cắm sâu 8 Hình Chân đê kiểu cọc và chân đê bằng ống buy 8 Hình Giải pháp kết cấu đê đá đổ 8 Hình Kết cấu đê đá đổ có sử dụng kết cấu bảo vệ mặt đê 9 Hình Giải pháp kết cấu đê tường cọc 9 Hình Kết cấu đê mái nghiêng 10 Hình Kết cấu đê kết hợp 10 Hình Kết cấu đê hỗn hợp cải biển 11 Hình Kết cấu đê tường cọc có hàng cọc xiên trước 11 Hình Các yếu tố ảnh hưởng đem lại lựa chọn giải pháp kết cấu hợp lý 12 Hình Sự thay đổi mặt sóng khi leo lên mái đê 13 Hình Quỹ đạo parabol của hạt nước rơi xuống mái đê 15 Hình Biểu đồ áp lực sóng lên mái nghiêng 17 Hình Biểu đồ áp lực sóng đẩy nổi 18 Hình Đồ thị xác định kl của hai công thức 23 Hình Đồ thị xác định kl của hai công thức và 24 Hình Biểu đồ phân bố tốc độ dội của sóng vào mái đê 24 Hình Các khía cạnh trượt, mất ổn định của đê mái nghiêng 31 Hình Sơ đồ tính trượt cung tròn công trình bảo vệ cảng mái nghiêng 32 Hình Sơ đồ xác định tâm trượt ban đầu 34 Hình Sơ đồ kiểm tra trượt phẳng của công trình bảo vệ cảng mái nghiêng 34 Hình Các biểu đồ áp lực sóng lên tường chắn sóng thẳng đứng khi sóng rút 35 iiiDanh sách hình ảnh Hình Tải trọng tác dụng lên công trình trọng lực tường đứng 36 Hình Biểu đồ ứng suất theo mặt phẳng tiếp xúc giữa công trình và lớp đệm đá 37 Hình Biểu đồ ứng suất theo mặt phẳng tiếp xúc tầng đệm đá và đất nền 38 Hình Sơ đồ tính ổn định theo phương pháp mặt trượt cung tròn 40 Hình Sơ đồ phát triển biến dạng dẻo theo Jaropolski 41 Hình Sơ đồ chịu lực của cọc bị mặt trượt cắt qua 43 Hình Sơ đồ tải trọng tác động lên công trình móng nông 43 Hình Sơ đồ tải trọng tác dụng lên công trình móng sâu 44 Hình Chịu lực kết cấu khối nông 44 Hình Mặt bằng phương án tuyến 3 phương án chọn 51 Hình Mặt cắt ngang đê đất 52 Hình Mặt cắt ngang đê đá đổ 52 Hình Mặt cắt ngang đê bằng hệ thống ống BTCT 53 Hình Ứng dụng khối BTCT rỗng cho đê quai Tiên Lãng 53 Hình Sơ đồ kiểm tra ổn định trượt cung tròn 55 Hình Tính toán kiểm tra ổn định theo Geoslope 36 iiiDanh sách thuật ngữ, chữ viết tắt Danh sách thuật ngữ, chữ viết tắt HĐĐ - hệ hải đồ BTCT - bê tông cốt thép BTCT ƯST - bê tông cốt thép ứng suất trước - chiều dài sóng - góc nghiêng của kè MNTT - mực nước tính toán h - chiều cao sóng m - mái dốc ρ - tỷ trọng nước dung trọng nước g - gia tốc trọng trường - độ dốc của sóng - góc hợp giữa mái dốc đê và mặt nước của sóng leo nc - hệ số tổ hợp tải trọng; n - hệ số vượt tải; md - hệ số phụ điều kiện làm việc; kn - hệ số bảo đảm; m - hệ số diều kiện làm việc; c - cường độ áp lực chủ động; b - cường độ áp lực bị động; MNTK - mực nước thiết kế ivMở đầu Mở đầu 1. Tính cấp thiết của đề tài Việt Nam có hệ thống sông ngòi dày đặc; chỉ tính những con sông có chiều dài trên 10km, có khoảng con sông. Mật độ sông ngòi trung bình là 0,6 km/km2, vùng dày đặc nhất đồng bằng sông Hồng và sông Cửu Long đạt 4 km/km2. Dọc theo bờ biển dài hơn có hàng trăm cửa sông mang theo hàng triệu m3 phù sa đổ ra biển, tạo nên những bãi bồi rộng lớn lấn ra phía biển hàng chục mét trong một năm, đặc biệt là vùng sông Hồng và sông Cửu Long. Từ xa xưa cha ông ta đã biết đắp đê quai trên những bãi bồi này, tạo thành những diện tích lớn phục vụ cho canh tác nông nghiệp, nuôi trồng thủy sản. Tuy nhiên việc đắp đê quai lấn biển trước đây thường được thực hiện trên những diện tích bãi bồi nổi cao, đã ổn định; vì vậy kết cấu đê quai thường là đê đất, thời gian thi công kéo dài trong nhiều năm. Với công trình đê quai lấn biển Tiên Lãng nhằm phục vụ cho xây dựng sân bay quốc tế diện tích mặt bằng khoảng tuyến đê quai dài hơn 22km, qua những khu vực sâu tới -1,5m hệ Hải đồ HHĐ, yêu cầu thi công ngắn, đã đặt ra yêu cầu phải nghiên cứu giải pháp kết cấu có khả năng thi công nhanh, đảm bảo yêu cầu kỹ thuật trong thi công, trong khai thác nhưng phải có giá thành rẻ, chính là đòi hỏi đặt ra đối với nghiên cứu của đề tài. 2. Tổng quan về tình hình nghiên cứu thuộc lĩnh vực đề tài Tại Việt Nam, đê quai lấn biển truyền thống chủ yếu là đê đất, sau đó là đê đá đổ. Mới đây đã có một số đề xuất kết cấu đê sử dụng ống Geotube [2], đê đá kết hợp với tường góc trên nền cọc [5]. Qua tính toán cho thấy có loại đê kết hợp cho hiệu quả kinh tế, song tác giả muốn tìm kiếm một giải pháp kết cấu mới nhằm đem lại hiệu quả kinh tế- kỹ thuật cao hơn nữa. 3. Mục đích của đề tài Mục đích của đề tài là tìm ra giải pháp kết cấu mới có chất lượng về kinh tế kỹ thuật ứng dụng cho công tác đắp đê quai lấn biển nói chung và Tiên Lãng nói riêng. 4. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu là đê quai để ổn định các bãi bồi phục vụ cho công tác san lấp, xây dựng trên diện tích các bãi bồi. 5. Phương pháp nghiên cứu Nghiên cứu lý thuyết kết hợp tính toán thử nghiệm để kiểm chứng kết cấu đề xuất. 6. Ý nghĩa khoa học và thực tiễn Đắp đê quai lấn biển là công việc hết sức phức tạp, vì kết cấu đê chịu tác động trực tiếp của sóng, dòng chảy, nước dâng Các đê quai trước đây cha ông chúng ta thực hiện thi công thường trên những vùng bãi bồi nổi cao, vì vậy có thể lợi dụng thủy triều để thi công trong điều kiện không ngập nước. Với đê Tiên Lãng có nhiều đoạn đê qua những vùng thường xuyên ngập nước với độ sâu lớn, những vùng này khi thủy triều cao chịu tác động rất mạnh của sóng và dòng chảy, việc thi công sẽ cực kỳ khó khăn nếu như vẫn sử dụng các dạng kết cấu đê đất như trước đây; nếu sử dụng đê đá đổ việc thi công sẽ thuận lợi hơn, nhưng sẽ rất tốn kém. Rõ ràng nếu sử dụng các kết cấu đê truyền thống như đê đất, đê đá sẽ dẫn đến khó khăn trong thi công, hoặc sẽ rất tốn kém. Từ thực tế như vậy việc tìm giải pháp kết cấu mới chính là việc làm khoa học nhằm giải quyết yêu cầu thực tế đặt ra. 1Chương 1 Tổng quan về kết cấu đê quai lấn biển Chương 1 Tổng quan về kết cấu đê quai lấn biển Kết cấu đê truyền thống tại Việt Nam Việc đắp đê lấn biển đã được thực hiện khá sớm tại Việt Nam, song đặc biệt được chú trọng và phát triển mạnh vào thời kỳ quai đê lấn biển của Nguyễn Công Trứ. Cứ vài chục năm tuyến đê mới lại được hình thành tại những vùng bãi bồi nổi cao, ổn định. Các tuyến đê quai được bồi đắp tôn tạo trong nhiều năm hình thành các tuyến đê biển như hiện nay. Kết cấu đê ban đầu được đắp bằng đất khai thác tại chỗ, trước đây thường không có lớp kết cấu bảo vệ mặt đê phía biển, vì vậy thường bị hư hỏng do tác động của sóng khi triều cường, nước dâng do bão. Sau này lớp mặt được quan tâm bảo vệ bằng những dạng kết cấu khác nhau, cho đến nay sử dụng phổ biến là kết cấu đá lát khan, đá hộc xây, các tấm và khối bê tông tự chèn với nhiều hình thức rất đa dạng. Trên hình thể hiện kết cấu bảo vệ mặt ngoài đê biển Hải Hậu, Giao Thủy, tỉnh Nam Định; chọn hình thức lát mái dốc đê bằng các tấm bê tông M300, liên kết với nhau theo hình thức “âm - dương”, đây là kết cấu bảo vệ mặt đê được đánh giá là thành công theo kết quả đánh giá trong tổng kết 5 năm xây dựng, cải tạo, nâng cấp hệ thống đê biển từ Quảng Ninh đến Quảng Nam. +5,50 +5,00 +3,50 MNTK +2,29 -0,50 Hình Mặt cắt ngang điển hình và mặt bằng kết cấu đê biển Hải Hậu 2Chương 1 Tổng quan về kết cấu đê quai lấn biển Kết cấu đê khu kinh tế Nam Đình Vũ Điểm đặc biệt các khu kinh tế hình thành do lấn biển, đó là diện tích lớn, tuyến đê qua những vùng có độ sâu thường xuyên ngập nước, tác động mạnh của môi trường. Cụ thể khu kinh tế Nam Đình Vũ có diện tích chiều dài tuyến đê với cao độ địa hình 0,0 ÷ 1,8m HHĐ, chịu tác động của sóng trong trường hợp triều cường, nước dâng do bão, với chiều cao từ 2,5 ÷ 3,4m, vì vậy đặt ra yêu cầu cần phải tìm kiếm giải pháp kết cấu để sao cho vừa đảm bảo kỹ thuật với chi phí đầu tư là thấp nhất, đã có 7 phương án đề xuất để xem xét lựa chọn. Giải pháp kết cấu đê đất Hình là kết cấu đê đất do [7] đề xuất. Nhằm thỏa mãn điều kiện ổn định và giảm tác dụng của sóng, mái dốc phía biển sử dụng 2 độ dốc m = 4,0 và m = 3,5; giữa 2 mái dốc có cơ đê rộng 5m. Mái dốc phía trong m = 2,5. Ngoài ra chân đê còn được chặn bởi ống Buy D150 đổ đá hộc, ống Geo-tube lõi cát R150. Mặt đê được bảo vệ dưới tác động của sóng là các tấm bê tông cốt thép BTCT kích thước 100x100x50cm lắp ghép trong các khung BTCT. 700 500 500 300 Hình Giải pháp kết cấu đê đất Khắc phục nhược điểm của đê đất trong thi công việc đắp đất rất khó khăn trong điều kiện ngập nước, chịu tác động của sóng, dòng chảy; các nhà thiết kế đã đưa ra các giải pháp khác nhau sử dụng các túi cát bằng vải địa kỹ thuật, hoặc dùng các ống Geotube lõi cát để đắp thân đê hình +7,50 +6,50 +5,00 +4,50 0,00 -1,00 Hình Mặt cắt ngang đê đất, thi công thân đê bằng các túi cát bằng vải địa kỹ thuật 3Chương 1 Tổng quan về kết cấu đê quai lấn biển Kết cấu bảo vệ mái đê Vật liệu đất đắp không có khả năng chịu tác động của sóng và dòng chảy, mặt khác trên nền địa chất yếu đê sẽ bị lún nhiều do lún thân đê và lún của nền. Với các đê bảo vệ khu kinh tế không cho phép thi công kéo dài, vì vậy phải xử lý nền làm tăng kinh phí đầu tư. Bảo vệ mái đê, hiện có rất nhiều giải pháp kết cấu, tùy theo điều kiện thực tế để lựa chọn. 1 Đá hộc đổ rối là biện pháp thi công đơn giản, cơ giới hóa cao nhưng tốn nhiều đá và kém mỹ quan. Giải pháp này cho kết quả tốt khi khai thác được đá bảo đảm kích thước và trọng lượng. Trọng lượng đá được xác định từ điều kiện ổn định của viên đá dưới tác dụng của sóng và dòng chảy. Kích thước viên đá chọn cần đảm bảo tỷ lệ giữa kích thước lớn nhất và nhỏ nhất không lớn hơn 3. 2 Đá hộc lát khan các viên đá được thi công sát nhau đảm bảo khe hở không lớn hơn 5cm. Các khe hở này được chèn bằng các viên đá có kích thước bé. Bề mặt đá lát khan tương đối bằng phẳng, có mỹ quan. Lát khan được coi là đạt yêu cầu kỹ thuật khi không nhấc được một viên đá riêng lẻ lên hay không dịch chuyển được các viên đá, phần lõm của bề mặt trên chiều dài 2m không lớn hơn 0,1d d là đường kính danh nghĩa của viên đá. Để đề phòng phong hóa và phá hoại do lún người ta chỉ tiến hành lát đá sau khi độ lún công trình đã tắt. Lát khan có thể thực hiện một lớp hoặc hai lớp. Nếu lát bằng hai lớp thì lớp đá trên có kích thước lớn hơn lớp dưới. Để phân bố đều áp lực trên mái dốc và bảo vệ được vật liệu trong đoạn gia cố, dưới lớp đá lát khan có cấu tạo lớp đá dăm và tầng lọc ngược. Các khe lún được bố trí với khoảng cách từ 15÷20m hình Hình Kết cấu bảo vệ đê đất bằng đá lát khan 3 Đá xây ở những nơi có tác động mạnh của sóng và dòng chảy, kích thước viên đá yêu cầu lớn thì phải sử dụng kết cấu đá xây. Đối với đá lát khan, các khe hở được chèn bằng các viên đá nhỏ sau đó chít các khe hở bằng vữa; còn đối với đá xây người ta đổ vữa rồi đặt viên đá lên xây. Do các viên đá được gắn kết cứng vào với nhau, nền đất phải ổn định mới xây. Đá được xây trong các khung bê tông nhằm tăng khả năng chịu lực và khắc phục lún cục bộ. Dưới lớp đá xây cấu tạo lớp đệm đá dăm kết hợp với vải lọc, bố trí ống thoát nước hợp lý để thoát nước phía trong. 4 Bê tông đổ tại chỗ bê tông đổ tại chỗ có thể thực hiện được trên mái dốc m=1÷2,5. Tùy theo khoảng cách giữa các khe của kết cấu từ 3÷4m, diện tích mỗi ô từ 2,5÷4 m2. Khe kết cấu rộng từ 2÷3cm chạy ngang và chạy dọc theo bờ; khe nhiệt cách nhau từ 20÷30m. Dưới lớp bê tông cũng có cấu tạo tầng lọc ngược hoặc vải lọc. 4Chương 1 Tổng quan về kết cấu đê quai lấn biển 5 Bê tông cốt thép đổ tại chỗ được sử dụng ở những vùng có sóng và dòng chảy lớn. Tỷ lệ cốt thép bố trí theo hai phương từ 0,3÷0,5%. 6 Bê tông đúc sẵn được sản xuất tại nơi thuận tiện, sau đó vận chuyển đến nơi xây dựng, vì vậy thuận tiện cho thi công, chất lượng các tấm bê tông bảo đảm, tiêu hao vật liệu ít hơn so với bê tông đổ tại chỗ. Hình thức các tấm bê tông đúc sẵn rất đa dạng; hình chữ nhật, hình vuông, hình lục lăng Kích thước của tấm được xác định từ điều kiện ổn định và chống đẩy nổi. Các tấm bê tông được liên kết với nhau theo kiểu liên kết mềm, chúng cũng có thể được nối với nhau bằng dây cáp, cốt thép chờ hoặc các khớp. Lớp đệm dưới các tấm bê tông có chiều dày từ 15÷20cm có tầng lọc ngược dọc theo các khe hở. Sau đây là 4 loại kết cấu bê tông đúc sẵn điển hình a Cấu tạo một số cấu kiện đúc sẵn - Cấu kiện Basalton những cấu kiện này được sản xuất bằng máy dưới áp suất nhất định trong một nhà máy với sự kiểm soát cao về môi trường. Theo cách sản xuất này, nước không được cho vào nên tất cả độ ẩm sẽ sinh ra từ cát, do vậy sản xuất được những cấu kiện bê tông có chất lượng cao. Theo hàng thẳng, các cấu kiện có thể liên kết với nhau ở 4 cạnh, nhưng ở góc, điểm đầu và điểm cuối phẳng nên các cột cấu kiện chỉ liên kết với nhau ở 2 cạnh. Chiều cao mỗi cấu kiện từ 15cm đến 50cm, 1m2 được lắp ghép từ 18 cấu kiện. Các cấu kiện này được lắp ghép bằng cần cẩu hình Hình Cấu kiện Basalton - Cấu kiện Hydro-blocks Cấu kiện này có ưu điểm tăng ổn định do ma sát. Chúng được sản xuất trong nhà máy có sự kiểm soát chặt chẽ, đảm bảo chất lượng cao. Hình dạng cấu kiện Hydro-blocks cho phép dễ dàng thích ứng với hình dáng khác nhau của thân đê. Với diện tích đê khoảng 1,3m2, cần khoảng 25 cấu kiện, chiều cao mỗi cấu kiện từ 15 đến 50cm hình Hình Cấu kiện Hydro-blocks 5Chương 1 Tổng quan về kết cấu đê quai lấn biển - Cấu kiện TSC Cấu kiện TSC sử dụng hệ thống khóa liên động để làm giảm sự tấn công của sóng, chúng được sản xuất ngay tại công trường. Các cấu kiện đúc sẵn này có cấu tạo như một tổ ong, kích thước khoảng 18, 26 và 30cm hình Hình Cấu kiện TSC - Cấu kiện Âm dương là cấu kiện bê tông dựa vào hệ thống khóa liên động với các cấu kiện khác để làm giảm tác động của sóng, dòng chảy. Hệ thống khóa liên động giống như những mái ngói nhà. Các cấu kiện này được sản xuất tại công trường, có kích thước cơ bản 40x40x24cm hình Hình Cấu kiện Âm dương b So sánh ưu nhược điểm các cấu kiện đúc sẵn - Tính ổn định Basalton và Hydro-blocks ổn định được nhờ vào lực ma sát giữa các cấu kiện; hai cấu kiện này có những lỗ nhỏ, nước có thể tự do chảy qua khi chịu tác động của sóng. Hai cấu kiện TSC và Âm dương đạt được sự ổn định nhờ liên kết giữa các cấu kiện với nhau. Do hệ thống khóa liên động của các cấu kiện này mà nước biển không thể dễ dàng chảy tự do sau những đợt sóng, do đó lực đẩy sẽ cao hơn. - Lắp dựng cấu kiện Cấu kiện Hydro-blocks có một hình dạng giống nhau, chỉ cần xếp chúng mà không cần có hệ thống liên kết gì. Cấu kiện Âm dưng cũng có hình dáng tương tự nhưng do đặc điểm có hệ thống khóa liên động nên được xếp thứ hai theo tiêu chí này. Xếp thứ ba là cấu kiện Basalton, loại này bao gồm 18 cấu kiện nhỏ được lắp dựng bằng máy và đảm bảo được sức mạnh của chúng. Cấu kiện TSC có đặc điểm tương tự nhưng lại có nhiều điểm liên kết cho mỗi cấu kiện. Hơn nữa cấu kiện TSC và Âm dương phải được lắp dựng bằng thủ công trong khi Hydro-blocks có thể lắp bằng thủ công và bằng máy. - Sửa chữa Cấu kiện Hydro-blocks bao gồm nhiều cột có hình dáng giống nhau nên việc thay thế những cấu kiện bị hư hỏng là rất dễ dàng. Cấu kiện Basalton cũng là cấu 6Chương 1 Tổng quan về kết cấu đê quai lấn biển kiện cột ma sát, nhưng khó thay thế, sửa chữa vì có tới 18 cấu kiện khác nhau trong mỗi diện tích 1,3m3; nếu một cấu kiện bị hư hỏng, sẽ rất khó để sửa chữa, thay thế. Cấu kiện Âm dương và cấu kiện TSC có liên kết mảng nên việc thay thế là hết sức khó khăn, ngay cả khi một cấu kiện bị hư hỏng. - Sử dụng vật liệu Các cấu kiện ma sát sử dụng nhiều vật liệu hơn so với cấu kiện liên kết. Cấu kiện Basalton và Hydro-blocks có ít nhiều giống nhau. Khoảng trống giữa các cấu kiện, Basalton có khoảng 10÷12%; khoảng trống giữa các cấu kiện, Hydro- blocks có khoảng 10÷15%. Điều đó có nghĩa là ứng với cùng một chiều cao bằng nhau, cấu kiện Basalton và Hydro-blocks sử dụng cùng một khối lượng vật liệu như nhau. - Sự mềm dẻo khi lắp đặt Cấu kiện Hydro-blocks có thể dễ dàng lắp dựng trong những đường cong chuyển tiếp và sử dụng những cấu kiện giống nhau cho những đoạn thẳng thân đê. Basalton cũng có thể được lắp dựng trong những phần cong của thân đê bằng cách sử dụng những mẫu cấu kiện uốn đặc biệt với những hàng cấu kiện có đỉnh và đáy bằng phẳng. Các cấu kiện TSC và Âm dương không phù hợp cho những đoạn cong. Trong trường hợp này thường phải bố trí thêm một số cấu kiện bê tông cốt thép để lắp vào những chỗ trống giữa các đoạn thẳng. 7 Gia cố bằng bitum Vật liệu bitum và các chế phẩm của nó được sử dụng ngày càng nhiều để gia cố mái đê đất do tính đàn hồi, chống thấm và thi công đơn giản. Có nhiều hình thức để gia cố bằng bitum như đá dăm thấm nhập nhựa, bê tông atphan. Kết cấu chân đê đất chân khay Để đảm bảo ổn định cho đê đất, cần lựa chọn hình thức kết cấu chân đê hợp lý tùy thuộc tình hình xói lở, chiều cao sóng và chiều dày của thân đê. 1 Chân đê nông Tại vùng mức độ xói lở không nghiêm trọng, chân đê chỉ có nhiệm vụ chống đỡ dòng chảy tạo ra do sóng ở chân đê, thường sử dụng kết cấu đá hộc. - Kiểu chân đê nổi lồi đá hộc được phủ phẳng trên chiều rộng 3÷4,5 lần chiều cao sóng trung bình; chiều dày từ 1 đến 2 lần chiều dày lớp kè hình - Chân đê kiểu chìm lõm đá hộc hình thành chân đê hình thang ngược, ứng dụng cho vùng địa chất yếu. Bề rộng bảo vệ chân đê từ 2÷3 chiều cao sóng, chiều dày từ 2÷3 chiều dày kè hình Hình Chân đê kiểu nổi và kiểu chìm 7Chương 1 Tổng quan về kết cấu đê quai lấn biển 2 Chân đê sâu Trong vùng bãi bị xói lở mạnh, để tránh moi hẫng đất nền khi mặt bãi bị xói sâu, cần sử dụng chân khay cắm sâu hình Hình Chân đê kiểu mũi cắm sâu - Chân đê bằng cọc gỗ, cọc bê tông cốt thép loại chân đê này được dùng khi nền đất dính dễ đóng cọc hình - Chân đê bằng ống buy chân đê bằng ống buy bên trong chèn đá hộc; hình thức này được sử dụng càng thuận lợi nếu nền là cát dễ dàng hạ chìm ống buy hình Hình Chân đê kiểu cọc và chân đê bằng ống buy Giải pháp kết cấu đá đổ Hình là giải pháp kết cấu đê đá đổ do [ ] đề xuất. Nhằm giảm chiều cao khối đá đổ, sử dụng tường hắt sóng BTCT cao 4,4m. Chân đê và mái đê được đổ bằng đá có trọng lượng lớn hơn 1t đảm bảo chịu được tác động của sóng và dòng chảy thiết kế. Hình Giải pháp kết cấu đê đá đổ Kết cấu đê đá đổ nêu trên có ưu điểm không dùng kết cấu bảo vệ mặt đê do sử dụng những viên đá có khối lượng lớn, tuy nhiên rất khó khai thác vật liệu cũng như thi công, 8Chương 1 Tổng quan về kết cấu đê quai lấn biển vì vậy có thể sử dụng kết cấu đê đá đổ có kết cấu bảo vệ mặt đê, như vậy đá đổ thân đê không phải sử dụng những viên đá có kích thước lớn, thuận tiện cho thi công, tuy nhiên khối lượng vật tư tăng đáng kể do phải mở rộng mặt cắt đê hình +8,80 +7,80 +5,50 +4,50 +2,00 +0,00 Hình Kết cấu đê đá đổ có sử dụng kết cấu bảo vệ mặt đê Giải pháp kết cấu đê bằng tường cọc Sử dụng kết cấu tường cọc làm đê rất ít được sử dụng, do kinh phí xây dựng thường rất lớn do phải đóng rất nhiều cọc tạo thành bức tường bảo vệ khu kinh tế. Hình là kết cấu đê tường cọc BTCT SW-740. Đây không phải là dạng kết cấu truyền thống, song là phương án kết cấu dự kiến trong qui hoạch vì vậy được đưa ra để xem xét. Với chênh lệch độ cao trước và sau đê 5,0m trong điều kiện địa chất yếu = 1028’; C = 0,02 kG/cm2; IS = 1,42 áp lực đất bị động không thể thắng được áp lực đất chủ động, vì vậy phải sử dụng khối đá gia trọng phía trước và hệ thống giảm tải phía sau kết hợp lăng thể đá giảm tải [4], [5]. Hình Giải pháp kết cấu đê tường cọc Giải pháp kết cấu đê mái nghiêng Giải pháp kết cấu đê này thực chất là đê đất, tuy nhiên chân đê sử dụng kết cấu đê đá đổ đến cao độ có thể thi công đê đất thuận tiện. Do nền địa chất yếu, sử dụng hàng cọc xiên chụm đôi với bước cọc theo chiều dọc hợp lý nhằm tăng khả năng chống trượt hình Với kết cấu này, thân đê có thể thi công hoàn toàn bằng cát, vì vậy cho phép đầm nén thuận lợi. Lớp mặt kết cấu đá đổ phía biển cần sử dụng đá có kích thước và trọng lượng lớn để bảo vệ [4], [5]. 9Chương 1 Tổng quan về kết cấu đê quai lấn biển +5,64 +7,5 +4,14 +6,0 +3,14 +5,0 m=3 +0,14 +2,0 m=1,25 m=1 m=2 -1,86+0,0 61 61 Hình Kết cấu đê mái nghiêng Giải pháp kết cấu đê đá kết hợp với tường đê trên nền cọc xiên chụm đôi Giải pháp kết cấu này hỗn hợp giữa đê đá đổ và tường chắn bê tông cốt thép trên nền cọc. Tường bê tông cốt thép có cấu tạo các gờ giảm sóng, tiêu sóng hạn chế tác động của sóng lên công trình hình Kết cấu đê đá đổ cần có lớp mặt sử dụng đá đổ có kích thước và trọng lượng lớn, chịu được tác động của sóng và dòng chảy[4], [5]. +5,99 +7,85 +3,14 +5,0 MNCTK +1,94 +3,8 +0,14 +2,0 m=1,25 m=1 m=2 -1,86 +0,0 61 61 Hình Kết cấu đê kết hợp Giải pháp kết cấu đê hỗn hợp cải biên Hình là kết cấu đê hỗn hợp cải biên, đó thực chất vẫn là đê đá đổ kết hợp đê bằng tường BTCT trên nền cọc, tuy nhiên đài cọc ở đây cấu tạo dạng khung rỗng kết hợp kết cấu chắn đá nhằm có thể bù lún dễ dàng trong quá trình khai thác. Khối đá giảm tải phía trước được sử dụng rất linh hoạt tùy theo điều kiện địa hình và tác động của sóng, dòng chảy như vậy sẽ tính toán được khối lượng vật tư hợp lý góp phần giảm kinh phí đầu tư [4], [5]. 10Chương 1 Tổng quan về kết cấu đê quai lấn biển +5,99 +7,85 +3,14 +5,0 MNCTK +1,94 +3,8 m=1,25 m=1 -0,36 +1,5 m=2 -1,86 +0,0 61 61 Hình Kết cấu đê hỗn hợp cải biển Kết cấu đê tường cọc có hàng cọc xiên trước Đây là phương án kết cấu do [3] đề xuất thay cho phương án đề xuất trong TKCS kết cấu bao gồm tường chắn sóng cao 4m trên tường cọc ống BTCT-ƯST D800 loại C; phía trước có hàng cọc chống neo xiên BTCT-ƯST D600 dài 23m, bước cọc 3m hình Kết cấu tường cọc này như đã trình bày ở trên do khối lượng đóng cọc quá lớn, đặc biệt với nền địa chất yếu không có giải pháp xử lý giảm tải áp lực đất vì vậy tổng tải trọng ngang so sóng, dòng chảy kết hợp tải trọng ngang do áp lực đất rất lớn đã làm tăng kích thước kết cấu lên rất nhiều. +5,00 MNTH +2,901 +2,00 +1,00 -1,00 -2,50 Hình Kết cấu đê tường cọc có hàng cọc xiên trước Nhận xét các phương án kết cấu được sử dụng Phân tích, so sánh các phương án kết cấu đê theo các tiêu chí kinh tế, kỹ thuật, thi công, tác động môi trường, khai thác sử dụng đã được trình bày chi tiết trong [4] ở đây chỉ rút ra một số kết luận chính như sau - Giải pháp kết cấu đê đất, đê đá là những kết cấu truyền thống đã được sử dụng lâu đời, vì vậy đã có được rất nhiều nghiên cứu giải pháp kết cấu bảo vệ mái đê, kết cấu chân đê, giải pháp thi công nhằm đảm bảo các yêu cầu kỹ thuật khi xây dựng trên nền 11Chương 1 Tổng quan về kết cấu đê quai lấn biển địa chất yếu, chịu tác động mạnh của sóng và dòng chảy, tuy nhiên thi công kéo dài, kinh phí đầu tư thường rất lớn. Nếu tiếp tục nghiên cứu theo hướng này không thể có giải pháp kết cấu đạt chất lượng kinh tế kỹ thuật cao được. - Giải pháp kết cấu đê bằng tường cọc cho phép thi công cơ giới cao tuy nhiên kết cấu này có kinh phí lớn do phải sử dụng và đóng rất nhiều cọc để tạo ra tường chắn bảo vệ khu đất xây dựng. Như vậy giải pháp này chỉ sử dụng trong những điều kiện đặc biệt như mặt bằng chật hẹp, yêu cầu độ sâu trước đê lớn - Giải pháp kết cấu đê kết hợp do tận dụng được hài hòa ưu điểm giữa móng nông và móng sâu cho phép tiết kiệm khối lượng vật tư, thi công nhanh, vì vậy giảm được kinh phí đầu tư xây dựng; có thể được nghiên cứu ứng dụng xây dựng đê quai lấn biển trên nền địa chất yếu; Song đề tài không muốn dừng ở đây - muốn tìm kiếm các giải pháp kết cấu có tính đột phá đem lại hiệu quả cao hơn về kinh tế; đó là mục tiêu của tất cả các nghiên cứu khoa học về lĩnh vực xây dựng nói chung, xây dựng công trình thủy nói riêng, thể hiện như hình Hình Các yếu tố ảnh hưởng đem lại lựa chọn giải pháp kết cấu hợp lý 12Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Tính toán đê mái nghiêng Các tác động chính của sóng vào mái nghiêng Sóng biển từ vùng nước sâu H - chiều dài sóng tiến vào bờ, gặp vật cản là 2 tuyến đê chắn sóng mái nghiêng có mái dốc m = cotgα α - góc nghiêng của kè sẽ gây ra rất nhiều tác động có hại cho kết cấu đê. Trước hết sóng leo lên mái với nhiều hình dạng mặt sóng khác nhau hình rồi đó liên tiếp phá hoại mái ngoài và các bộ phận khác. Hình Sự thay đổi mặt sóng khi leo lên mái đê Tùy theo vị trí của đoạn đê mái nghiêng đặt tại vùng nước sâu, vùng nước nông, vùng sóng đổ, vùng mép nước và trong mép nước mà cường độ tác động của sóng khác nhau với cùng một chế độ gió. Các hiện tượng khúc xạ, nhiễu xạ, giao thoa, phản xạ, leo tụt trên mái, dòng chảy ven, dòng chảy quẩn, dòng thấm qua đê, sự chảy tràn qua mặt luôn xảy ra cực kỳ phức tạp và đều có tính chu kỳ. Những hiện tượng này phá hoại sức cản cân bằng của mái nghiêng gây ra nhiều rủi ro cho đê biển. Bằng chứng đã có một vài đoạn đê, thậm chí cả tuyến công trình bảo vệ mái nghiêng bị sạt lở, kéo theo phá hủy các công trình được bảo vệ. Có 5 tác động của sóng lên kết cấu đê mái nghiêng - Áp lực sóng phân bố; - Áp lực đẩy nổi; - Lực dội đập; - Leo và tụt theo mái; - Tác động của dòng chảy. Bảng Các tác động chính của sóng vào mái nghiêng Thứ tự Sơ đồ tải trọng Ghi chú 1 2 3 1 - Diện tích chịu lực rộng, nhất là khi tấm phủ phẳng; - Cường độ Pmax nhỏ hơn lực dội đập. 13Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới 2 - Cường độ lớn nhất ứng với bụng sóng - Di chuyển theo chiều dọc mái - Càng xuống sâu càng giảm 3 1 - Xảy ra rất ngắn giây 100 - Diện tích chịu lực hẹp - Sung lực lớn - Hãn hữu xảy ra 4 - Chiều cao sóng leo phụ thuộc vào độ nhám và thấm nước của mái - Gây tụt cục bộ mái 5 - Dòng chảy ven và dòng chảy quẩn - Phạm vi có dòng chảy B 4 Tính toán tác động của tải trọng sóng Áp lực phân bố của sóng lên mái nghiêng [1] 1 Phương pháp Dzunkovski-Chaschaxich V 2 P 1,7 B [1 0,017m 0,02h] gh max 2gh Trong đó - h là chiều cao sóng; - m là mái dốc, m = cotgα; - ρ là tỷ trọng nước dung trọng nước; - g = 9,81 m/g2 là gia tốc trọng trường; - VB là vận tốc hạt nước tại điểm B hình - Giá trị [1-0,017m-0,02h] gọi là hệ số áp lực; 14Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới V 2 - Đại lượng B gọi là hệ số gốc. 2gh YA A vA 90° kr h o Y B kr B y H o X XB Hình Quỹ đạo parabol của hạt nước rơi xuống mái đê y0 H kr hkr 1 m2 Hkr - chiều sâu giới hạn hoặc chiều sâu lâm giới; H kr h 0,47 0,023 ; h m2 h hkr - chiều cao phần tử nước so với mực nước tính toán, hkr 0,95 0,84m 0,25 h ; h- chiều cao sóng; λ - bước sóng; h Khi đo dốc sóng 0,02 0,14 và m = 1,55, thì giá trị Hkr = 0,71,7h. h Trong tính toán thường lấy 0,024 0,06 thì Hkr = 0,91,2h 2 Phương pháp Dzunkovski-Lupinski Các ký hiệu tương tự như ở công trức giá trị trong ngoặc kép cũng gọi là hệ số áp lực, song cách tính có khác đôi chút. Cường độ áp lực Pmax được xác định theo V 2 0,65 P 1,7 B [1 ] gh max 7 m 2gh h 4 Hai công thức chủ yếu do giáo sư viện sĩ Dzunkovski sáng lập, song ra sau nên được áp dụng rộng rãi hơn. 3 Phương pháp Warpo I 15Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Khác với các công thức trên, Warpo tìm ra cách tính Pmax không phụ thuộc vào hệ V 2 số gốc B mà chỉ phụ thuộc vào mái dốc m và các thông số sóng 2gh P [0,01m 0,02 2,56 0,27m] gh max h là chiều dài sóng; 4 Phương pháp Warpo II Bản thân phương pháp Warpo II cũng gần như Warpo I, song có độ chính xác hơn và công thức tính Pmax được cải biên như sau P [1,74 0,184m 0,68m 1,36 .10 2 ] gh max h 5 Phương pháp Zukovec-Sajxev Phương pháp này xác định Pmax bằng công thức thực nghiệm 1 m2 P 1,9 gh max h m2 6 Phương pháp Sankin Về mức độ đơn giản, công thức Sankin còn hơn công thức của Zukovec-Sajxev P [0,35 0,023 8 m] gh max h 7 Phương pháp Popov Trên cơ sở thí nghiệm mô hình popov- đã thiết lập ra công thức tính Pmax như sau P 2,28 7,98 [0,028 1,15 m 4,8 0,85] gh max h h h 8 Phương pháp Kanarski Công thức tính Pmax của Kanarski có dạng thu gọn V 2 P 1,71 B ghcos2 max 2gh 9 Phương pháp cải biên của Dzunkovski So với hai công thức cũ của Dzunkovski, tác giả đã cải biên thu gọn hơn V 2 P 1,7 B cos2 max 2g Ở đây δ = 900-α+β xem hình là trọng lượng riêng của nước biển. 16Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới 10 Phương pháp SNIP 2_06_04_82 Giá trị Pmax trong các quy phạm thiết kế của Liên Xô cũ SNIP trước kia cũng như Việt Nam 22-TCN 222-95 được tính cụ thể Pmax = Trong đó h h ks = 0,85+4,8 +m0,028-1,15 kv là hệ số phụ thuộc độ thoải của sóng được xác định theo bảng Prel là đại lượng đặc trưng cho áp lực phân bố chuẩn, phụ thuộc vào chiều cao sóng h m và được lấy từ bảng Bảng Hệ số Kv λ/h 10 15 20 25 35 Kv 1 1,15 1,3 1,35 1,48 Bảng Giá trị Prel kpa hm 0,5 1 1,5 2,0 2,5 3,0 3,5 4 Prel 3,7 2,8 2,3 2,1 1,9 1,8 1,75 1,70 Lấy mốc giá trị Pmax tính được tại vị trí điểm B, biểu đồ áp lực phân bố của sóng vào mái đê được phân bổ gần đúng trên hình với các khoảng cách l1 = 0,0125Lα l2 = 0,0325 Lα l3 = 0,0265 Lα l4 = 0,0675 Lα Trong đó m L 4 m2 1 Hình Biểu đồ áp lực sóng lên mái nghiêng 17Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Điểm B xảy ra Pmax có thể xác định theo công thức thực nghiệm, cách mặt nước một đoạn yB 1 y A 1 2m 2 1A B B m 2 Với 1 m2 A h0,47 0,023 h m2 h B h[0,950,84m 0,25 ] - Pmax tính theo SNIP luôn cho giá trị lớn hơn phương pháp Warpo II. - Phương pháp Sankin cho các giá trị Pmax nổi trội hơn so với tất cả 7 phương pháp còn lại, nhất là chiều cao sóng càng lớn. Như vậy khi h = 5÷10m, thì Pmax của Sankin có thể gấp đôi, gấp ba so với kết quả tính theo bất kỳ phương pháp nào. - Quy phạm Việt Nam 22-TCN 222-95 lấy giống như của Nga và các nước SNG, nói chung kết quả thiên về an toàn. Như vậy không có nghĩa là thừa an toàn, vì sự ổn định tổng thể, ổn định cục bộ sẽ phải xem xét đầy đủ 5 tác động chính của sóng và tác động khác của biển vào kết cấu công trình bảo vệ cảng mái nghiêng đối với tất cả các giai đoạn sử dụng, thi công Áp lực sóng đẩy nổi [1] Áp lực đẩy nổi của sóng chính là áp lực đẩy từ dưới lên, ngược với áp lực phân bố và luôn luôn ứng với bụng sóng. Đặc điểm nổi bật của biểu đồ lực đẩy nổi là di chuyển vị trí ứng với các thời điểm t khác nhau. Điểm có cường độ tối đa của lực đẩy nổi Pmax luôn luôn xuất hiện ở chân sóng, tức là nằm giữa đoạn L, nếu bụng sóng càng xa mép nước thì cường độ áp lực đẩy nổi càng giảm, mặc dầu độ dài của bụng sóng L không thay đổi. Hình Biểu đồ áp lực sóng đẩy nổi 18Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Các biểu đồ có dạng parabol với điểm cực trị ở chân sóng. Riêng biểu đồ áp lực sóng đẩy nổi ở đoạn sát mặt nước có nửa trên biến thiên tuyến tính – áp lực thủy tĩnh, còn nửa dưới cong. Giá trị Pimax của biểu đồ này có thể tính theo Pimax = .Hkr Trong đó - là dung trọng nước; - Hkr là chiều sâu giới hạn chiều sâu lâm giới ứng với sóng vỡ cuối cùng; Trong một chu kỳ T = 10÷15 giây. Giá trị Pmax có vị trí di chuyển lên-xuống dọc theo mái đê, sinh ra phá vỡ kết cấu mặt công trình bảo vệ cảng mái nghiêng. Cứ như thế tiếp diễn lặp đi, lặp lại gây ra sụt mái rồi ruột đê bung ra. Dưới đây trình bày một số phương pháp quen thuộc. 1 Phương pháp Andreisuk Cường độ áp lực đẩy nổi Pmax tại chân sóng được xác định theo Pi,max = . Trong đó - là hệ số phụ thuộc vào phương pháp thi công lớp gia cố mái đê, = 0,150,3; - ρ là tỷ trọng dung trọng nước; - g là gia tốc rơi tự do; - h là chiều cao sóng; 2 Phương pháp Kanarski Về cơ bản dạng công thức Kanarski không khác công thức của Andreisuk, Pmax được tính theo Pi,max = . Các ký hiệu , ρ, g, h, α như ở các công thức trước; d là chiều dày lớp phủ; Hệ số của Kanarski được xác định theo bảng Bảng Hệ số ξ của Kanarski m 2 3 4 5 hm 1 0,320 0,300 0,275 0,250 1,5 0,323 0,304 0,279 0,255 2 0,327 0,327 0,283 0,260 19Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới 3 Phương pháp Sankin Sankin đưa ra công thức khác với phương pháp trên m 2 P 0,085 gh 1 i,max m 2 1 h 4 Phương pháp SNIP 206_04_82 Về nguyên lý giống như công thức tính áp lực phân bố, chỉ có khác đại lượng đặc trưng áp lực chuẩn đẩy nổi Pi,rel được tính theo các đường cong trên hình [ ], còn công thức Pi,max của cường độ áp lực đẩy nổi xác định theo công thức Pi,max = Trong đó ks, kv lấy theo Công thức không những được đưa vào các quy phạm thiết kế công trình bảo vệ mái nghiêng của Nga mà cả của Việt Nam trong quy phạm 22-TCN 222-95. Lực dội đập của sóng lên mái đê [1] Lực dội đập là trường hợp đặc biệt của áp lực sóng, có 4 đặc thù chính của lực dội đập là - Xảy ra không có quy luật. 1 - Xuất hiện trong thời gian rất ngắn, s . 100 - Bị dội đập trong phạm vi diện tích nhỏ có thể coi như tác động vào một điểm, không trải rộng. - Trị số các lực dội đập lớn hơn nhiều so với lực phân bố. Công thức chung để xác định lực dội đập có dạng tổng quát V 2 P k B max 2g - k là hệ số tổng hợp nhiều yếu tố, mỗi tác giả có giá trị thực nghiệm riêng; - VB là tốc độ tổng cộng của tia nước tai điểm B; Sóng leo và tụt theo mái Khi sóng tiến vào mái đê, năng lượng toàn phần của sóng được phân thành 3 hướng 1 Năng lượng phản xạ tạo ra sóng phản xạ quay ngược với chiều với hướng sóng vào. Độ lớn của sóng phản xạ phụ thuộc vào độ dốc của mái đê và độ dốc của sóng h/. Năng lượng toàn phần của sóng có thể xác định theo công thức 20Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới gh 2 E tp 8 Còn tỷ lệ giữa năng lượng phản xạ và năng lượng toàn phần tính gần đúng 4 E px tg 2 Etp 100. Trong đó - α là góc nghiêng của mái đê; h - là độ dốc của sóng; 2 Năng lượng tiêu tan, do nhiều nguyên nhân làm nóng nước, tạo thành dòng chảy rối, do ma sát đáy biển, dội đập vào mái đê, làm biến dạng sóng, va đập không khí, biến dạng mái đê, tạo thành dòng quẩn và các nguyên nhân khác. Tỷ lệ giữa năng lượng tiêu tan với năng lượng toàn phần có thể tính theo công thức 2 4 Ett 4sintg tg 1 2 Etp 3 cos sin 100. là góc hợp giữa mái dốc đê và mặt nước của sóng leo. 3 Năng lượng leo của sóng lên mái là phần năng lượng còn lại El = Etp-Epx+Ett Tỷ lệ phần năng lượng leo so với năng lượng toàn phần có thể tính theo công thức E 4sin tg 2 l Etp 3 cos sin Nhờ có năng lượng El sóng leo được lên mái cao hay thấp. Nếu mái đê có m = 1,5÷5,0 và sóng bị vỡ hoàn toàn sẽ xác định được chiều cao sóng leo hl bằng công thức gần đúng 2kh h 3 l m h Trong đó - m, , h có ý nghĩa như trên; - k là hệ số tính tới độ hám và mức độ thấm nước của đê; - k = - k1 là hệ số nhám; - k2 là hệ số thấm; 21Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới - Tất cả 3 hệ số k, k1, k2 tra theo bảng Bảng Các hệ số k1; k2 và k Đặc trưng mái đê loại gia cố k1 k2 k=k1k2 - Bằng bêtông Asphanlt nhẵn mặt 1 1 1 - Bằng bêtông thủy công phẳng mặt với diện tích khe nối 5% 1 0,9 0,9 - Mái đê thấm nước cấu tạo bằng cắt, dăm, sỏi, đá hộc và bằng các khối bêtông mà tỉ số giữa chiều cao sóng hm so với đường kính trung bình cả các khối đó >500 1 0,9 0,9 200100 0,95 0,85 0,80 50 0,90 0,80 0,70 20 0,80 0,70 0,60 10 0,75 0,60 0,45 5 0,70 0,5 0,35 Chiều cao sóng leo hl được xác định theo công thức hl = Với - k1, k2 đã trình bày ở trên; - kv là hệ số phụ thuộc vào tốc độ gió, lấy theo bảng 1 2sin k 3 - β là góc giữa tia sóng và đường mép nước; - kp là hệ số tính đến mức độ không đều của chiều cao sóng leo, lấy theo bảng - kl là hệ số tỷ lệ tương đối giữa chiều cao sóng leo hl,1% với chính chiều cao sóng ứng với tần suất p = 1% ở trước đê h1% hl,1% kl h1% Hệ số kl được tra theo các đồ thị trên hình ứng với hai mái dốc m≤3 và m≥3. Bảng Hệ số kv V m/s 010 1015 1520 2030 kv 0,8 1,1 1,3 1,5 Bảng Hệ số kp P% 0,1 1 2 5 10 30 50 kp 1,1 1 0,96 0,91 0,86 0,76 0,68 22Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Hình Đồ thị xác định kl của hai công thức Trong các quy phạm thiết kế của Nga và Việt Nam 22 TCN 222-95, chiều cao sóng leo thường xác định cho tần suất 1% theo công thức hl,1% = Hệ số ksp phụ thuộc vào m = cotgα và vận tốc gió, tra bảng Các giá trị k1, k2, kl, h1% có ý nghĩa như trên; Bảng Hệ số k m = cotg 1-2 3-5 >5 Khi tốc độ gió V 20 m/s 1,4 1,5 1,6 ksp Khi tốc độ gió V = 10 m/s 1,1 1,1 1,2 Khi tốc độ gió V 5 m/s 1,0 0,80 0,60 Từ công thức ta dễ dàng xác định được chiều cao sóng leo ứng với tần suất i% hl,i% = Hệ số kp theo bảng còn kl của hai công thức lấy theo đồ thị trên hình 23Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Hình Đồ thị xác định kl của hai công thức và Sau khi số năng lượng leo tiêu thụ hết, sóng sẽ tụt xuống theo quy luật tự chảy. Chiều cao hl càng lớn thì tốc độ tụt càng lớn và góp phần làm xói lở mái công trình bảo vệ cảng và bờ biểu đồ tốc độ dội của sóng vào mái đê theo lý thuyết phải là biểu đồ biến thiên liên tục. Xong thực tế chỉ có thể xây dựng biểu đồ gẫy khúc như thể hiện trên hình với xuất phát điểm biết tốc độ cực đại tại điểm B và VB rồi lần lượt suy ra các điểm tại đỉnh sóng leo, tại mực nước tĩnh, tại độ sâu z = H1 và tại các điểm z > H1. v B vo hl Z=HI vz =hI B vz Hình Biểu đồ phân bố tốc độ dội của sóng vào mái đê Tốc độ VB được xác định theo công thức 2 2 VB [VB x VB y Trong đó VBx = X’B = VA 24Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới X B VBy = Y’B = -gtB = -g V A - tB là thời điểm chất lỏng rơi xuống mái dốc điểm B; - η là hệ số thực nghiệm tính tới việc giảm tốc độ dòng nước khi tràn lên các lớp nước và trượt trên mái đê 1 0,017m 0,02h Tại điểm z = -hl tốc độ bằng 0, tại mực nước tĩnh 10k k g V 1 2 6 h 2 0 2 m k1, k2 lấy theo bảng Từ điểm B đến độ sâu z = H1 biểu đồ biến thiên tuyến tính. Độ sâu H1 phụ thuộc vào mái dốc m và các thông số sóng và h, xác định theo công thức 1,22 H h 1 m0,8 Từ độ sâu z > H1 tốc độ Vz tính bằng công thức n h Vz 2 z sh g n là hệ số phụ thuộc vào độ thoải của sóng và lấy theo bảng Bảng Hệ số n λ/h 8 10 15 20 n 0,60 0,70 0,75 0,80 Xác định trọng lượng các khối phủ lớp gia cố mái [1] Hiện nay, có rất nhiều công thức xác định trọng lượng các khối phủ gia cố mái công trình bảo vệ mái nghiêng. Mỗi công thức đều được xây dựng trên cơ sở thực nghiệm, đều phụ thuộc vào thông số sóng, mái dốc, vật liệu chế tạo và đặc trưng hình dạng kích thước loại khối. 1 Công thức của 22TCN 222-95 Ký hiệu W là trọng lượng mỗi khối, h là chiều cao sóng, là bước sóng, m là mái dốc, M là dung trọng vật liệu chế tạo khối trên khô, là dung trọng nước, công thức có dạng 25Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới 3,16k h3 W fr M h M 13 1 m3 Trong đó kfr là hệ số phụ thuộc vào độ thoải sóng /h và loại khối tra theo bảng Bảng Hệ số kfr của công thức Phương pháp thi công Loại khối gia cố mái Xếp lộn xộn Xếp trật tự - Đá hộc 0,025 - - Khối bêtông hộp 0,021 - - Các khối bêtông dị dạng 0,008 0,006 Khi độ sâu tính từ mực nước z ≥ 0,7h thì công thức có dạng 7,5z2 h Wz 2 Công thức của SNIP II - 57-75 Trọng lượng W được xác định với độ sâu z 3 thì h 0,2 S 0,2 p 0,83p 1 1,73I r 3 M 2 1 D50 N 28Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Trong đó h là chiều cao sóng có ý nghĩa; D50 là đường kính đá xác định theo W50 D50 3 M W50 là trọng lượng đá hoặc vật liệu khác ứng với tỷ lệ độ thô 50%; M là dung trọng đá hoặc khối bê tông; p là yếu tố cho phép của lõi; N là số sóng; α là góc nghiêng mái đê; Ir là số Iribarren; 2,5 3,5 lấy bằng 3,5; T là chu kỳ sóng; S là số chỉ đạo thiết kế, được tra từ bảng Bảng Giá trị S của công thức Vander - Meer’s Giá trị S Thứ tự m Tối thiểu Trung bình Tối đa 1 1,5 2 - 8 2 2 2 5 8 3 3 2 8 12 4 4 3 8 17 5 6 3 8 17 7 Công thức US Army Engineer Waterway Experiment-Station Công thức xác định trọng lượng W được viết cụ thể 3 3 k' M h W 3 3 cos sin M γM, h, α có ý nghĩa tương tự như công thức trên; 29Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới γ là dung trọng nước; μ là hệ số ma sát giữa khối gia cố với vật liệu nằm dưới; k’ là hệ số chỉ đặc trưng về hình dáng kích thước hình học của khối gia cố; Xác định kích thước các khối đơn giản Nếu khối gia cố phủ mái công trình bảo vệ mái nghiêng có cấu tạo đơn giản như khối lập phương có cạnh là a, hoặc đá hộc, đá tảng có đường kính d, có thể từ điều kiện ổn định lật và trượt ta xác định trực tiếp được a hoặc d V 2 a d k max M 2g Ở đây Vmax là tốc độ tụt tối đa của dòng nước trên mái; k là hệ số phụ thuộc vào hình dáng, đặc trưng bề mặt của đá hoặc khối lập phương đồng thời còn phụ thuộc vào vị trí điểm tựa của nó với mái đê; Nếu biết chiều cao sóng leo hl theo lý thuyết thủy lực sẽ tìm được tốc độ tụt v 2ghl η là hệ số tổn thất dọc đường; Đưa v vào công thức nhận được a d k hl M Nếu tính hl theo công thức sẽ có a d . .kv .k p .kl . h1% M Nếu các lớp vật liệu được đổ được đầm cẩn thận có thể xác định hệ số k k = kmin = 0, α là góc nghiêng của mái đê; C là hệ số chảy bao đối với khối phủ mái; Thông thường lấy = 0,45; kv = 1; kp = 1; Biểu thức được viết lại 0, a d Ckl h1% cos M Đặt = sẽ thu gọn 30Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới 0,34 a d kl h1% cos M Hệ số thường được lấy từ 0,6÷1,0 và trung bình = 0,8; đồng thời γ = 10 kN/m3; 3 γM = 25 kN/m thì biểu thức sẽ là 0,23 a d k h cos l 1% Yêu cầu chung về tính toán kết cấu công trình bảo vệ mái nghiêng Nguyên tắc chung Nguyên tắc chung tính toán đê mái nghiêng vẫn phải tuân thủ đầy đủ lý thuyết trạng thái giới hạn của nhóm I và nhóm II. Theo nhóm I các trạng thái giới hạn bao gồm ổn định trượt sâu bằng phương pháp trượt cung tròn; ổn định trượt phẳng đối với từng mái dốc,các bộ phận kết cấu trên mặt đê, chân đê; ổn định cục bộ các khối gia cố trên mái hoặc ở chân khay. Khả năng chịu lực của nền, khả năng chống xói và cuối cùng tính toán độ bền của tất cả các cấu kiện tương ứng với từng loại vật liệu kèm theo các quy phạm của chính nó. Theo nhóm II các trạng thái giới hạn bao gồm độ lún theo phương thẳng đứng, chuyển vị ngang và góc xoay. Sự hình thành và mở rộng vết nứt đối với các cấu kiện BTCT. Hình Các khía cạnh trượt, mất ổn định của đê mái nghiêng Các khía cạnh trượt - mất ổn định đối với công trình bảo vệ mái nghiêng Dưới tác động của tải trọng sóng, dòng chảy và sai sót của con người đối với kết cấu đê mái nghiêng thường xảy ra 7 khía cạnh chính như sau 1 Mất ổn định khối gia cố mái, do tính toán không đủ trọng lượng, đặt lên mái dốc hoặc do sự kết nối không chặt giữa các khối với nhau 2 Sự dịch chuyển của lớp khối gia cố mái do chọn các thông số sóng tính toán còn nhỏ, chất lượng của lớp gia cố không đạt yêu cầu. 3 Sự xê dịch của khối cấu kiện trên đỉnh đê do kiểm tra lật trượt với hệ số ổn định thấp. 4 Sóng tràn trên mặt đê do cao trình đê lấy thấp hơn hoặc chọn các yếu tố sóng nhỏ. 31Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới 5 Xói chân đê do tốc độ dòng chảy của sóng, của hải lưu bằng và lớn hơn tốc độ xói. 6 Thân đê bị mất ổn định theo mặt trượt trụ tròn. 7 Lún của đê trong quá trình thi công và khai thác. Công thức tổng quát tính ổn định Công thức tổng quát để tính ổn định dựa trên lý thuyết trạng thái giới hạn m ≤ Rg k n nc - hệ số tổ hợp tải trọng; n - hệ số vượt tải; md - hệ số phụ điều kiện làm việc; kn - hệ số bảo đảm; m - hệ số diều kiện làm việc; Tính ổn định trượt sâu cho công trình bảo vệ cảng mái nghiêng Hình Sơ đồ tính trượt cung tròn công trình bảo vệ cảng mái nghiêng Tương tự như các công trình thuỷ công khác, phương pháp trượt cung tròn được áp dụng tính ổn định trượt sâu cho công trình bảo vệ cảng mái nghiêng. Song mỗi cung trượt chỉ có ý nghĩa cho riêng từng mái trong hoặc ngoài. Tâm trượt O phải chọn sao cho mặt trượt không vượt quá mép đối diện của đỉnh đê và các công thức kiểm tra trượt cung tròn viết ở một trong hai dạng dưới đây R C l W'cos tg K I i i 1 W x i i 32Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới C l W'cos 2tg sin K I i i 1 i 1 W sin i i R Trong đó n nm k K - hệ số ổn định, đối với đê mái nghiêng K K c d n ; m R - bán kính cung tròn trượt; C1 - lực dính của đất lấy theo qui định của trạng thái giới hạn I; I - góc nội ma sát lấy theo qui định của trạng thái giới hạn I; li - chiều dài đoạn cung tròn trượt tương ứng với nguyên tố chia nhỏ thứ i; xi - khoảng cách nằm ngang từ trọng tâm của nguyên tố chia nhỏ thứ i tới tâm trượt; i - gradien của đường đáy nguyên tố thứ i; H - ngoại lực tối đa theo phương nằm ngang tác động lên khối vật liệu đê ở trong cung trượt áp lực thuỷ tĩnh, áp lực sóng, áp lực đất vv ; a - cánh tay đòn của ngoại lực h đối với tâm trượt O; W - tổng trọng lượng thực của nguyên tố chia nhỏ thứ i; W’ - tổng trọng lượng hữu hiệu của nguyên tố chia nhỏ thứ i bao gồm trọng lượng vật liệu và gia tải, đối với vật liệu ngâm trong nước tính với dung trọng đẩy nổi. Vì bài toán ổn định chung của kết cấu công trình bảo vệ cảng mái ngiêng tính theo trạng thái giới hạn, nên hai công thức trên phải đưa về dạng m nC . Wi .xi .RCI li W'cos itg 1 K n Các hệ số nc, n, md, Kn có ý nghĩa như công thức trên. Tâm trượt O ban đầu có thể lấy gần đúng theo phương pháp của Viện sĩ Grisin như sau tại điểm I trung điểm của mái đê hình kẻ một đường vuông góc với mái và một đường thẳng đứng. Hai đường này tạo ra góc . Tiếp tục vẽ đường phân giác của góc . Tâm O ban đầu được chọn phải thỏa mãn - Nằm trên đường phân giác của góc ; - Nằm trên cao trình đỉnh đê hình Từ tâm trượt O chọn ban đầu sẽ tiếp tục chọn thêm các tâm trượt tiếp theo nằm xung quanh điểm O, song vẫn nằm trên cao trình đỉnh đê. Từ các kết quả K = fR xây 33Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới dựng được đường cong và tìm ra Kmin, đó là giá trị cuối cùng để đánh giá mức độ ổn định tổng thể của đê mái nghiêng. Hình Sơ đồ xác định tâm trượt ban đầu Tính toán ổn định trượt phẳng của công trình bảo vệ cảng mái nghiêng Sơ đồ tính ổn định trượt phẳng của công trình bảo vệ cảng mái nghiêng được thể hiện trên hình Đánh giá mức độ an toàn theo một trong hai công thức sau Theo lí thuyết trạng thái giới hạn m nc . CI li W'i cos Hi sin tg I sin W' cos Hi Kn Theo hệ số an toàn CI li W'i cos Hi sin tg I K sin W' cos Hi Trong đó các ký hiệu của hai công thức này có ý nghĩa như các ký hiệu tương tự đối với ba công thức và Cần lưu ý - gradien của cả mặt trượt; K - hệ số an toàn 1,0; Hình Sơ đồ kiểm tra trượt phẳng của công trình bảo vệ cảng mái nghiêng 34Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Tính toán đê thẳng đứng Tải trọng sóng Đê thẳng đứng có kết cấu kiểu trọng lực hình kiểu cọc, tường cọc hình kết hợp kết cấu cọc với đê mái nghiêng hình khi tính toán tải trọng sóng áp dụng lý thuyết tính toán theo công trình tường đứng. Tùy theo độ sâu trước công trình mà tính toán theo sóng nước sâu db > 0,5, sóng nước nông 0,5 > db > dcr, sóng vỡ dcr > db > dcr,l [1]. Trong đó - chiều dài sóng trung bình của sóng; db - độ sâu từ mực nước tính toán đến đáy phía trước công trình; dcr - độ sâu tới hạn ứng với sóng vỡ lần thứ nhất khi sóng tiến sát vào bờ; dcr,l - độ sâu tới hạn ứng với sóng vỡ lần cuối; Các công trình đê quai lấn biển, sau này chính là các công trình bảo vệ bờ biển nằm sát bờ, thường ở vùng sóng vỡ vì vậy đề tài chỉ trình bày lý thuyết tính toán tải trọng do sóng vỡ tác động lên công trình. Hình Các biểu đồ áp lực sóng lên tường chắn sóng thẳng đứng khi sóng rút Giá trị lớn nhất của hình chiếu theo phương ngang P kN/m của tải trọng do sóng vỡ tác dụng lên tường khi sóng rút tính toán theo các biểu đồ áp lực sóng theo phương ngang và phương đứng hình trong đó giá trị P kPa xác định theo công thức [6]. P g z 0,75 hbr Trong đó zr - độ hạ thấp của mặt nước so với mực nước tính toán MNTT ở phía trước tường đứng khi sóng rút m. Tùy thuộc khoảng cách a1 từ mép nước đến công trình mà z được lấy như sau zz = 0 khi a1 3hbr zr = 0,25hbr khi a1 3d L là bước cọc lấy theo phương dọc; d là đường kính cọc hoặc chiều rộng cừ; 42Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới tz là nửa chiều dài đoạn cọc bị uốn giữa hai mặt phẳng ngàm và được xác định theo một trong hai cách sau Cách thứ nhất 8M t z b c lc Cách thứ 2 t t n z 1,25 tn là khoảng cách từ mặt trượt đến chân cọc; t z MÆt tr•ît Qi Qi t z t n Hình Sơ đồ chịu lực của cọc bị mặt trượt cắt qua Đề xuất giải pháp kết cấu mới Phân tích nguyên nhân làm việc kết cấu đã biết Nghiên cứu tính toán chung các công trình mái nghiêng đê đất, đê đá; công trình trọng lực là những kết cấu móng nông công trình thỏa mãn điều kiện chịu lực và ổn định nhờ trọng lượng bản thân của công trình. Với nền đất yếu thường phải xử lý nền do đó đầu tư tốn kém. Hình Sơ đồ tải trọng tác động lên công trình móng nông Công trình tường góc kết hợp với đê đá đổ có ưu điểm tận dụng được ưu điểm và khắc phục nhược điểm hai loại trên do đó đem lại hiệu quả về kinh tế kỹ thuật khi xây dựng trên nền địa chất yếu. 43Chương 2 Nguyên tắc tính toán các kết cấu đê chính, đề xuất giải pháp kết cấu mới Hình Sơ đồ tải trọng tác dụng lên công trình móng sâu Đề xuất giải pháp kết cấu mới Các kết cấu đã biết từ trước tới nay, tựu chung lại bao gồm hai loại làm việc theo nguyên lý móng nông móng trên nền thiên nhiên và nguyên lý móng sâu móng cọc. Do đặc điểm địa chất yếu, nếu sử dụng kết cấu làm việc theo nguyên lý móng nông cần phải xử lý nền gây ra tốn kém; Nếu sử dụng kết cấu làm việc theo nguyên lý móng sâu, phải đóng nhiều cọc cũng tốn kém. Giải pháp kết cấu do tác giả đã đề xuất trước đây là kết hợp giữa kết cấu làm việc theo nguyên lý móng nông và móng sâu đã cho kết quả khả quan. Với đề tài này tác giả muốn trình bày đề xuất dạng kết cấu mới làm việc theo nguyên lý vừa là móng nông, vừa là móng sâu nhằm đem lại hiệu quả kinh tế - kỹ thuật cao khi xây dựng công trình trên nền địa chất yếu nói chung và kết cấu đê quai lấn biển, bảo vệ bờ biển nói riêng. Trên hình trình bày sự làm việc của kết cấu mới là các khối rỗng có tiết diện ngang hình tròn thực chất là hình vành khuyên, hình vuông, hình chữ nhật làm việc theo nguyên lý trọng lực móng nông, đồng thời theo nguyên lý móng sâu như móng cọc. Hình Chịu lực kết cấu khối nông a Kết cấu rỗng dạng trụ tròn, dạng hình hộp, hình lập phương; b Kết cấu rỗng dạng chóp cụt. - Kết cấu chịu được tải trọng thẳng đứng nhờ phản lực nền trên diện tích tiết diện của kết cấu và ma sát bên, làm việc tương tự như kết cấu móng sâu, song có ưu điểm là không cần phải hạ xuống tới lớp địa chất tốt. - Kết cấu chịu được tải trọng ngang nhờ chính vào trọng lượng bản thân kết cấu, làm việc tương tự như kết cấu móng nông. Kết cấu đề xuất như trên không yêu cầu phải xử lý nền, không cần phải hạ sâu xuống tầng địa chất tốt chắc chắn sẽ đem lại hiệu quả kinh tế - kỹ thuật cao nếu được ứng dụng trong thực tế thay thế các dạng kết cấu đê truyền thống đã biết. 44Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Giới thiệu về dự án [2] Tên dự án Tuyến đê quai lấn biển Tiên Lãng. Địa điểm xây dựng Dự án Tuyến đê quai lấn biển huyện Tiên Lãng thuộc vùng bãi bồi, nằm ven biển phía Đông của huyện Tiên Lãng, vùng ngoài đê biển III thuộc địa bàn 4 xã Vinh Quang, Tiên Hưng, Đông Hưng, Tây Hưng, nằm kẹp giữa hai cửa sông Văn Úc và sông Thái Bình. Chủ đầu tư Ủy ban nhân dân thành phố Hải Phòng Cơ quan quản lý Dự án Ban Chuẩn bị đầu tư Dự án tuyến đê quai lấn biển Tiên Lãng. Mục tiêu của Dự án Theo định hướng phát triển giao thông hàng không của cả nước, sân bay Quốc tế Nội Bài cần có một sân bay dự phòng, để loại máy bay lớn có thể hạ cánh khi không đủ điều kiện hạ cánh ở sân bay Nội Bài. Tại Quyết Định số 640/QĐ-TTg ngày 28 tháng 04 năm 2011, Thủ tướng Chính phủ đã phê duyệt vị trí sân bay Quốc tế Tiên Lãng, trong đó cần diện tích hạ tầng phục vụ cho xây dựng sân bay là Nhiệm vụ của Dự án Dự án Tuyến đê quai lấn biển huyện Tiên Lãng có nhiệm vụ xây dựng tuyến đê quai lấn biển có chiều dài khoảng 22 km, bao khu vực bãi bồi Tiên Lãng nằm giữa hai cửa sông Văn Úc và sông Thái Bình; San lấp tạo diện tích mặt bằng khoảng ha , đủ diện tích hạ tầng cần thiết cho xây dựng sân bay Quốc tế Tiên Lãng. Tuyến đê quai phục vụ cho san lấp mặt bằng, đồng thời bảo vệ khu vực sân bay dưới tác động của sóng biển, thủy triều và những tác động bất lợi từ biển, đảm bảo an toàn cho khu vực sân bay. Các số liệu phục vụ cho tính toán [2] Tài liệu địa hình Khu vực dự án nằm trong vùng đất mới, là bãi bồi được tạo ra từ hai cửa sông Văn Úc và sông Thái Bình, vì vậy chưa có bản đồ về sử dụng đất được đo đạc trước đó. Khi lập dự án, Ban chuẩn bị đầu tư dự án đã triển khai đo đạc vùng dự án - Lập bản đồ tỷ lệ 1/ phục vụ cho quy hoạch sử dụng đất đã hoàn thành tháng 2 năm 2011; - Lập bản đồ tỷ lệ 1/ phục vụ cho giai đoạn lập Dự án đầu tư đang triển khai đo đạc; - Đo bình đồ lộ tuyến, trắc dọc, trắc ngang tuyến đê quai dự kiến đã hoàn thành ngày 15 tháng 09 năm 2011. 45Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Tài liệu địa chất Phục vụ cho giai đoạn lập Dự án Đầu tư, Ban chuẩn bị đầu tư dự án đã chỉ đạo triển khai khoan thăm dò địa chất nền dọc theo tuyến đê quai dự kiến, phục vụ cho thiết kế tuyến đê quai; khoan thăm dò địa chất nền khu vực mặt bằng san lấp, phục vụ cho tính toán san lấp mặt bằng, cụ thể như sau Tổng số hố khoan thăm dò là 102 hố, hố khoan bình thường có chiều sâu từ 22,0m- 25,0m, hố khoan kiểm tra có chiều sâu từ 40,0m – 69,0m trong đó - Dọc theo tuyến đê dự kiến là 58 hố khoan; - Khu vực san lấp mặt bằng là 44 hố khoan. Đánh giá chung về địa chất nền khu vực dự án Khu vực dự án là vùng bãi bồi, được tạo thành do tương tác giữa dòng chảy từ trong sông Thái Bình, sông Văn Úc với dòng thủy triều, sóng từ biển vào. Tùy theo mùa, mùa lũ hàm lượng phù sa trong sông nhiều, chất bồi lắng tạo bãi chủ yếu là lớp có hạt mịn, mang tính sét nhiều, mùa kiệt hàm lượng hạt lơ lửng trong sông ít, chất bồi lắng tạo bãi chủ yếu là lớp có hạt thô cát do sóng biển đưa. Do nguyên nhân thành tạo khác nhau nên địa chất nền bãi không đồng nhất, thường xen kẹp giữa những lớp có đường kính hạt khác nhau, không đồng đều, chiều dày các lớp tại những vị trí khác nhau thường dày mỏng khác nhau. Bao gồm các lớp sau Lớp 3 - Bùn sét - Đất có màu xám, xám nâu, xám đen trạng thái chảy. Lẫn hợp chất hữu cơ phân huỷ; - Bề dày lớp thay đổi mạnh, từ HD57 đến HD55; trung bình 3,38m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 13 búa/30cm. Lớp 4 - Bùn sét pha - Đất có màu xám, xám nâu, xám đen trạng thái chảy. Lẫn vỏ sò, vỏ hến và hợp chất hữu cơ phân hủy; - Đây là lớp cuối cùng, đáy lớp chưa xác định. Các hố khoan còn lại, bề dày trung bình là - Thí nghiệm xuyên tiêu chuẩn SPT cho búa/30cm. Lớp 5 - Cát, cát pha - Đây là lớp phân bố tương đối rộng khắp trên khu vực khảo sát, gặp tại hầu hết các hố khoan; - Đất có màu xám, xám đen, xám nâu trạng thái chảy. Lẫn vỏ sò, vỏ hến và hợp chất hữu cơ phân hủy. Đôi chỗ xen kẹp dải bùn sét và cát hạt mịn mỏng; - Tại các hố khoan HB1, HB2, HB6, HB7, HB13, HB16, HB17, HB18 và HB27 HB30 đây là lớp cuối cùng, đáy lớp chưa xác định. Các hố khoan còn lại bề dày trung bình là 4,51m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 48búa/30cm. Đôi chỗ cho N30 2 12 búa/30cm. 46Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Lớp 5a – Sét, sét pha dẻo mềm - Đất có màu xám, xám nhạt, xám nâu trạng thái dẻo mềm. Lẫn ít kết vón ôxít sắt; - Lớp chỉ gặp tại hố khoan HD2, tồn tại dưới dạng thấu kính phân bố từ độ sâu 8,1 11,40m. Do vậy chỉ thí nghiệm 1 mẫu không nguyên dạng xác định một số chỉ tiêu; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 9 búa/30cm. Lớp 6 - Bùn sét - Đất có màu xám, xám nâu, xám đen trạng thái chảy; lẫn hợp chất hữu cơ phân hủy; xen kẹp ít bùn sét pha; - Đây là lớp cuối cùng, đáy lớp chưa xác định. Các hố khoan còn lại, bề dày trung bình là 6,02m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 13búa/30cm. Lớp 7 - Sét dẻo chảy - Đất có màu xám, xám nhạt, xám xanh trạng thái dẻo chảy. Lẫn hợp chất hữu cơ phân hủy. Đôi chỗ xen kẹp dải sét pha mỏng; - Tại các hố khoan HD29, HD30 và HB15, đây là lớp cuối cùng, đáy lớp chưa xác định. Tại các hố khác bề dày lớp thay đổi mạnh, từ 1,20m HD21 đến 20,00 HD23 ; trung bình 6,14m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 46búa/30cm, đôi chỗ cho N30 3,7 búa/30cm. Lớp 7a - Sét pha nhẹ - Đất có màu xám nhạt, vàng nhạt trạng thái dẻo chảy; - Đây là lớp có bề dày tương đối mỏng, trung bình 2,04m. Gặp tại các hố khoan từ HD31 HD 35 , HB14 và HB24; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 67búa/30cm. Lớp 8 - Sét dẻo mềm - Đất có màu vàng, xám trắng, xám nhạt, nâu đỏ, xám nâu, xám xanh đến loang lổ; trạng thái dẻo mềm, đôi chỗ dẻo cứng; - Đáy lớp chưa xác định. Các hố khoan còn lại, bề dày trung bình là 4,22m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 8 10 búa/30cm, đôi chỗ cho N30 6,13,15búa/30cm. Lớp 9 - Lớp sét pha 47Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng - Đất có màu xám trắng, vàng, xám nâu, nâu đỏ đến loang lổ; trạng thái dẻo mềm, đôi chỗ dẻo cứng. Đôi chỗ lẫn ổ và dải ôxít sắt dạng kết vón màu nâu; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 9 12 búa/30cm, đôi chỗ cho N30 6 và N30 20búa/30cm. Lớp 9a - Lớp cát mịn - Cát có màu xám, xám đen đến xám nhạt, vàng mờ; kết cấu chặt vừa. Đôi chỗ xen kẹp dải sét pha mỏng. - Đây là lớp có bề dày tương đối mỏng, trung bình 2,73m. Gặp tại các hố khoan HD18, HD39, HD48 và HB31; Lớp 10 - Lớp sét dẻo cứng - Đất có màu vàng, xám trắng, xám nâu, nâu đỏ; trạng thái dẻo cứng; đôi chỗ lẫn ôxít sắt dạng kết vón màu nâu; - Bề dày trung bình của lớp 8,13m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 9 15búa/30cm. Lớp 10a - Lớp sét, sét pha dẻo chảy - dẻo mềm - Đất có màu xám, xám nhạt, xám xanh trạng thái dẻo chảy - dẻo mềm. Lẫn hợp chất hữu cơ phân hủy. Đôi chỗ xen kẹp dải sét pha mỏng; - Bề dày trung bình của lớp 4,28m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 57búa/30cm. Lớp 10b - Lớp sét nửa cứng - Đất có màu vàng, xám trắng, xám nâu; trạng thái nửa cứng; đôi chỗ lẫn ổ và dải ôxít sắt dạng kết vón màu nâu; - Lớp chỉ gặp ở các hố khoan HD9, HD18 và HB24. Tại hố HB24 đây là lớp cuối cùng, đáy lớp chưa xác định. Các hố khoan còn lại, bề dày trung bình là 7,6m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 21 62 búa/30cm. Lớp 11 - Lớp sét pha nhẹ - Đất có màu xám, xám nâu, xám nhạt, xám trắng trạng thái dẻo mềm; - Lớp chỉ gặp ở các hố khoan HD18, HD39, HD55, HB14 và HB37. Tại hố HB14, đây là lớp cuối cùng, đáy lớp chưa xác định. Các hố khoan còn lại, bề dày trung bình là 4,63m; - Thí nghiệm xuyên tiêu chuẩn SPT cho N30 12 21búa/30cm. 48Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Bảng Chỉ tiêu cơ lý của các lớp đất Tên lớp Chỉ tiêu cơ lý 3 2 2 đất bh kNm / độ C kN/m E kN/m 3 879 4 2606 5 3395 5a 3395 6 937 7 1747 7a 2914 8 2810 9 11 4302 9a 19 12 4500 10 3133 10a 11 2131 10b 6476 11 5215 Cấp công trình Tại Quyết định số 57/QĐ-BNN-KHCN ngày 08 tháng 01 năm 2010 của Bộ Nông nghiệp và Phát triển nông thôn, ban hành Tiêu chuẩn kỹ thuật áp dụng cho Chương trình củng cố, bảo vệ và nâng cấp đê biển, quy định phân cấp đê biển và xác định tiêu chuẩn an toàn. Theo quy định trên, tuyến đê quai lấn biển Tiên Lãng bảo vệ vùng có công, nông nghiệp phát triển với số dân được bảo vệ trên thuộc công trình cấp II, tương ứng với mức bảo đảm an toàn P=1% chu kỳ 100 năm xuất hiện một lần. Cao trình đỉnh đê và cao trình san nền Cao trình đỉnh đê Cao trình đỉnh đê quai được xác định theo Tiêu chuẩn kỹ thuật áp dụng cho chương trình củng cố, bảo vệ và nâng cấp đê biển từ Quảng Ninh đến Quảng Nam, ban hành theo Quyết định số 57/QĐ-BNN-KHCN ngày 08/01/2010 của Bộ nông nghiệp và Phát triển nông thôn. Cao trình đỉnh đê được xác định từ công thức Zdtk Z ntk R sl a Trong đó - Z dtk Cao trình đỉnh đê thiết kế; - Zntk Cao trình mực nước thiết kế MNTK, là cao trình mực nước biển tổng hợp ứng với tần suất thiết kế mực nước biển tổng hợp là mực nước tổng hợp của mực nước triều, mực nước dâng do bão, mực nước biển dâng do biến đổi khí hậu; - Rsl Chiều cao sóng leo lên mái đê; 49Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng - a Trị số gia tăng độ cao an toàn công trình cấp II có a=0,5m. Xác định mực nước biển thiết kế Zntk - Từ đường tần suất mực nước tổng hợp đã được xây dựng cho từng vùng biển, xác định mực nước tổng hợp thiết kế ứng với tần suất thiết kế P=1% Zntk Z tk1% 3,8 m Xác định chiều cao sóng leo Sử dụng mô hình SWAN 2D của Hà Lan để tính với nội dung cơ bản sau - Xác định chiều cao sóng nước sâu phía trước công trình Hs=1,68m; - Tính truyền sóng nước sâu về sóng nước nông phía trước công trình Hn=1,54m; - Xác định chiều cao sóng leo lên công trình, kết quả Rsl=3,2m. Xác định cao trình đỉnh đê Zdtk Z ntk R sl a 3,8 3,2 0,5 7,5 HHĐ Xác định cao trình san nền thiết kế Cao trình san nền thiết kế được chọn trên nguyên tắc Nền sân bay cao hơn nước biển thiết kế để đảm bảo sân bay không bao giờ bị ngập nước. Phần cao hơn mặt san nền được gọi là “đê” có tác dụng chống sóng, khi gặp bão cộng triều cường đều ở mức vượt tần suất thiết kế, khi đó sóng leo qua đỉnh đê, lượng nước vượt qua đê được thoát trở lại biển qua hệ thống thoát tiêu sát chân đê. Với quan điểm trên, chọn cao trình san nền lớn hơn mực nước biển thiết kế có xét biến đổi khí hậu Zsn Z ntk 1,2 3,8 1,2 5,0 m Chọn cao trình san nền là 5,0m, phù hợp với công trình ven biển tại Hải Phòng Một số phương án đề xuất trên hội thảo Phương án tuyến Đã có 3 phương án tuyến được đề xuất, sau khi phân tích lựa chọn các nhà Tư vấn đã lựa chọn phương án 3 hình có các thông số sau. Phần diện tích dự kiến làm sân bay nằm hoàn toàn ở phía ngoài đê biển hiện tại, tổng chiều dài đê quai lấn biển là 24,3 km chia làm ba đoạn như sau hình - Đoạn 1 Dọc theo cửa sông Văn Úc, giáp với tuyến đê biển hiện tại, dài - Đoạn 2 Chính diện với biển dài - Đoạn 3 Dọc cửa sông Thái Bình, giáp với tuyến đê biển hiện tại, dài Tổng diện tích vùng san lấp mặt bằng xây dựng sân bay là 50Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Hình Mặt bằng phương án tuyến 3 phương án chọn Một số các phương án kết cấu đã đề xuất [2] Kết cấu đê đất Kết cấu được đề xuất căn cứ vào các lý do sau hình 51Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng - Kết cấu thân đê bằng đất đắp sử dụng trong phần bãi không thường xuyên ngập nước, có cao trình từ mặt nền từ cao trình 0,00 trở lên; - Kết cấu đê bằng đất đắp, có thể xem là kết cấu truyền thống, đã được áp dụng xây dựng hầu hết tại các tuyến đê sông, đê biển ở Việt Nam; - Dự kiến mặt cắt đê bằng đất đắp ở phạm vi có cao độ nền ở cao trình trên 0,00m, không thường xuyên ngập nước. +7,50 +6,5 +5,00 +4,50 +2,00 -1,0 Hình Mặt cắt ngang đê đất Kết cấu đê đá đổ Kết cấu được đề xuất căn cứ vào các lý do [2] Kết cấu đê biển bằng đá đổ đã được áp dụng ở nhiều nước, trong đó có Hà Lan dùng trong xây dựng tuyến đê biển Bắc, Hàn Quốc sử dụng đê đắp đê quai lấn biển Seamangeum. Mặt cắt ngang đê có mái ngoài m=4,0; bố trí một cửa rộng 3,0m để giảm năng lượng sóng, mái trong m=2,0 mái đá đổ tự nhiên, hình +7,50 +6,5 +5,00 +4,50 +2,00 +0,00 Hình Mặt cắt ngang đê đá đổ Kết cấu đê bằng các túi vải địa kỹ thuật chứa cát Kết cấu được đề xuất căn cứ vào các lý do sau [2] Kết cấu đê biển bằng túi vải địa kỹ thuật chứa cát Geotube đã được áp dụng làm kết cấu đê quai lấn biển, công trình bảo 52Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng vệ bờ ở nhiều nước, trong đó có Trung Quốc, Hàn Quốc, Nhật Bản, Mỹ. Ở Việt Nam Geotube đã được áp dụng trong bảo vệ bờ sông Sài Gòn, đang áp dụng trong kết cấu đê quai lấn biển Cần Giờ, thành phố Hồ CHí Minh kết cấu này đã trình bày ở chương I hình Kết cấu đê bằng ống bê tông cốt thép Kết cấu được đề xuất căn cứ vào các lý do sau [2] Kết cấu đê quai bằng ống bê tông cốt thép M300, đóng sâu xuống nền đảm bảo khi chịu tác động của tải trọng ngang không bị đổ nghiêng, trong lòng ống được chèn đá hộc hoặc đất, kết cấu đê quai này đã được áp dụng tại Mỹ hình Hình Mặt cắt ngang đê bằng hệ thống ống BTCT Kết cấu mới đê quai Tiên Lãng bằng các khối rỗng Căn cứ kết cấu khối rỗng đã được phân tích, đề xuất trong chương II, qua tính toán thử nghiệm cho kết quả kích thước và bố trí các khối như trên hình Hình Ứng dụng khối BTCT rỗng cho đê quai Tiên Lãng 53Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Tính toán thử nghiệm chia kích thước khối và bố trí khối Các khối rỗng cơ bản khi áp dụng vào thực tế cần phải tiến hành tính toán để xác định được kích thước khối và bố tri khối “tối ưu” nhất. Trong các tính toán, nội dung tính toán ổn định là quan trọng nhất khi áp dụng vào vị trí xây dựng là nền địa chất yếu. Tính toán thực nghiệm được thực hiện theo phương pháp Gerxevanop, sau đó kiểm tra lại kết quả tính theo phần mềm Geoslope. Công thức kiểm tra ổn định Khi tính toán ổn định chung của công trình theo sơ đồ trượt sâu với giả thiết mặt trượt cung tròn phương pháp Terxhaagi cần thỏa mãn điều kiện sau m nc . .M tr .M g kn R G cos tg C l n nm k 1x 1,25 x 0,85 x 1,15 KK i i i i i c d n 1,06 1,1 R Giisin m 1,15 Trong đó nc - hệ số tổ hợp tải trọng, nc = 1 đối với tổ hợp cơ bản; n - hệ số vượt tải, n = 1,25; kn - hệ số đảm bảo, kn = 1,2 đối với công trình cấp II; m - hệ số điều kiện làm việc, m = 1,15; md - hệ số phụ điều kiện làm việc, md = 0,75 khi tính ổn định trượt sâu; Mtr, Mg - Tổng mô men của các lực gây trượt và lực giữ ứng với tâm cung trượt Mtr = R. i Mg = R. i + + Qci R - bán kính cung trượt m; gi - tổng trọng lượng của các lớp đất, của các cấu kiện công trình và của hoạt tải trong phạm vi cột đất thứ i; i - góc nghiêng so với đường nằm ngang của đường tiếp tuyến với cung trượt ở giao điểm của cung trượt với đường tác động của lực gi, đó cũng là góc giữa đường thẳng đứng với bán kính R vẽ qua giao điểm trên x arcsin i i R xi - khoảng cách theo đường nằm ngang từ tâm quay O đến đường tác động của lực gi; li - chiều dài đoạn cung ở đáy cột đất thứ i m; Qci lực kháng của cọc. 54Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Kết quả tính toán ổn định Kết quả tính - Tâm trượt O1 +7;-19,75 k=2,16 - Tâm trượt O2 +8;-10,25 k=2,07 - Tâm trượt O3 +9;+0,75 k=2,70 - Tâm trượt O4 +6;-10,25 k=1,68 - Tâm trượt O5 +2;-10,25 k=2,72 OOmin min 1,68 4 6; 10,25 Hình Sơ đồ kiểm tra ổn định trượt cung tròn 55Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng Hình Tính toán kiểm tra ổn định theo Geoslope Nhận xét Kết quả tính cho thấy việc chọn kích thước và bố trí các khối như trên hình chưa phải là tối ưu; nếu áp dụng vào thực tế cần tính toán thực nghiệm thêm. Khái toán kinh phí xây dựng - Căn cứ kết cấu đề xuất, bóc tách khối lượng cho 1m dài đê; áp dụng định mức, đơn giá hiện hành xác định chi phí trực tiếp như bảng 2. - Tổng hợp dự toán, kết quả cho ở bảng 1, giá trị xây lắp + Cho 1m dài đê là + Tổng chi phí xây dựng cho 22,3km là xấp xỉ tỷ đồng - Nếu so sánh với dự kiến phương án kết cấu đề xuất, lựa chọn [2] tổng kinh phí đầu tư cho toàn tuyến 22,3km khoảng tỷ đồng cho thấy phương án kết cấu mới như đề xuất chắc chắn sẽ giảm mức đầu tư tỷ đồng. Kết luận và kiến nghị Qua kết quả nghiên cứu cho thấy, kết cấu khối rỗng nếu được ứng dụng vào thực tế chắc chắn sẽ đem lại hiệu quả cao về kinh tế kỹ thuật khi xây dựng công trình trên nền đất yếu nói chung và công trình đê biển nói riêng. 56Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng BẢNG 1 BẢNG TỔNG HỢP DỰ TOÁN CÔNG TRÌNH ĐÊ QUAI TIÊN LÃNG STT Khoản mục chi phí Ký hiệu Cách tính Thành tiền I CHI PHÍ TRỰC TIẾP 1 Chi phí Vật liệu VL A + Theo đơn giá trực tiếp A1 Bảng dự toán hạng mục 2 Chi phí Nhân công NC B + Theo đơn giá trực tiếp B1 Bảng dự toán hạng mục 3 Chi phí Máy thi công M C + Theo đơn giá trực tiếp C1 Bảng dự toán hạng mục 4 Chi phí trực tiếp khác TT VL + NC + M x 2% Cộng chi phí trực tiếp T VL + NC + M + TT II CHI PHÍ CHUNG C T x 5% III THU NHẬP CHỊU THUẾ TÍNH TRƯỚC TL T+C x 5,5% Chi phí xây dựng trước thuế G T+C+TL IV THUẾ GIÁ TRỊ GIA TĂNG GTGT G x 10% Chi phí xây dựng sau thuế Gxdcpt G+GTGT V Chi phí xây dựng lán trại, nhà tạm Gxdnt Gxdcpt x 1% VI TỔNG CỘNG Gxd Gxdcpt + Gxdnt Bằng chữ Một trăm mười bốn triệu không trăm bảy mươi sáu nghìn năm trăm năm mươi mốt đồng chẵn./. 57Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng BẢNG 2 DỰ TOÁN CHI TIẾT CÔNG TRÌNH ĐÊ QUAI TIÊN LÃNG Mã số Đơn giá Thành tiền Đơn Khối STT Tên công tác / Diễn giải khối lượng Nhân Máy thi Đơn giá vị lượng Vật liệu Máy Vật liệu Nhân công công công 1 Khối I Lắp dựng ván khuôn 100m3 0,2 Lắp dựng cốt thép t 0,4704 Đổ BT M300 m2 3,92 Vận chuyển khối I cái 0,4 k=2 Lắp đặt khối I cái 0,4 k=2 Cộng 1 2 Khối II Lắp dựng ván khuôn 100m3 0,208 Lắp dựng cốt thép t 0,48922 Đổ BT M300 m2 4,0768 Vận chuyển khối II cái 0,4 k=2 Lắp đặt khối II cái 0,4 k=2 Cộng 2 3 Khối III Lắp dựng ván khuôn 100m3 0,175 Lắp dựng cốt thép t 0,4116 Đổ BT M300 m2 3,43 Vận chuyển khối III cái 0,4 k=2 Lắp đặt khối III cái 0,4 k=2 Cộng 3 58Chương 3 Tính toán ứng dụng cho đê quai Tiên Lãng 4 Tường chắn sóng Lắp dựng ván khuôn 100m2 0,147 Lặp dựng cốt thép t 0,293 Đổ bê tông M300 m3 0,975 Cộng 4 5 Đắp cát công trình m3 14, 6 Đáp đá hộc m3 19, Cộng 1-6 59Mục lục Tài liệu tham khảo [1] Phạm Văn Giáp, Nguyễn Ngọc Huệ , Nguyễn Hữu Đẩu, Đinh Đình Trường; Bể cảng và đê chắn sóng, nhà xuất Bản xây dựng, Hà Nội năm 2000; [2] Hội thảo xin ý kiến về kết cấu đê quai lấn biển Tiên Lãng, HP, 27/10/2011; [3] Liên danh Viện thủy công - Công ty TNHH tư vấn công nghệ kè bờ Minh Tác - Công ty cổ phần tư vấn Việt DELTA; Báo cáo tóm tắt phương án đề xuất, tổng dự toán phương án 6A + 7A, Dự án đầu tư xây dựng tuyến đê biển Nam Đình Vũ, HN 03/2012; [4] Nguyễn Văn Ngọc, phân tích một số dạng kết cấu đê biển đề xuất dùng cho đê Nam Đình Vũ, Tạp trí KHCNHH, 2016; [5] Nguyễn Văn Ngọc, Chủ nhiệm thiết kế cơ sở Dự án đầu tư xây dựng tuyến đê biển Nam Đình Vũ, HP 02/2011; [6] Tải trọng và tác động do sóng và do tàu lên công trình thủy; Tiêu chuẩn thiết kế, 22TCN 222-95, Hà Nội 1996; [7] Trung tâm khoa học và triển khai kỹ thuật Thủy lợi, Thiết kế cơ sở phương án đê đất; Dự án đầu tư xây dựng tuyến đê biển Nam Đình Vũ, HP 02/201. 60
quai đê lấn biển là gì